Chromium-intercalated Cr1/3TaS2 is well known for hosting a nontrivial chiral magnetic soliton lattice (CSL) with the reported highest Curie temperature (TC151 K) and strongest spin–orbit coupling, which has significant applications in gigahertz and high-speed spintronic devices. Herein, we thoroughly investigate the magneto-electrical transport properties of Cr1/3TaS2 single crystals. For H//ab, our magnetoresistance (MR) measurements reveal distinctive step-like behaviors, which are attributed to the formation and annihilation of chiral magnetic solitons. When under an oblique field, similar but weaker MR behaviors are observed compared to H//ab, indicating the appearance of an inclination-field-induced tilted-CSL. A topological Hall effect is observed under an oblique field, which is suggested to be induced by a nonzero topological charge density resulting from the tilted chiral states. The Cr1/3TaS2 offers an intriguing platform for studying the impact of chiral magnetic structures on magneto-electrical properties, which holds promise for both future spintronic device applications and fundamental investigation.

1.
M.
Ohkuma
,
M.
Mito
,
H.
Deguchi
,
Y.
Kousaka
,
J.
Ohe
et al,
Phys. Rev. B
106
,
104410
(
2022
).
2.
C.
Zhang
,
J.
Zhang
,
C.
Liu
,
S.
Zhang
,
Y.
Yuan
et al,
Adv. Mater.
33
,
2101131
(
2021
).
3.
R.
Cai
,
W.
Xing
,
H.
Zhou
,
B.
Li
,
Y.
Chen
et al,
Phys. Rev. B
100
,
054430
(
2019
).
4.
Y.
Liu
,
Z.
Hu
,
E.
Stavitski
,
K.
Attenkofer
, and
C.
Petrovic
,
Phys. Rev. B
103
,
144432
(
2021
).
5.
W. J.
Hardy
,
C.-W.
Chen
,
A.
Marcinkova
,
H.
Ji
,
J.
Sinova
,
D.
Natelson
, and
E.
Morosan
,
Phys. Rev. B
91
,
054426
(
2015
).
6.
S. F.
Weber
and
J. B.
Neaton
,
Phys. Rev. B
103
,
214439
(
2021
).
7.
C.-W.
Chen
,
S.
Chikara
,
V. S.
Zapf
, and
E.
Morosan
,
Phys. Rev. B
94
,
054406
(
2016
).
8.
X.
Li
,
Z.
Li
,
H.
Li
,
Y.
Yao
,
X.
Xi
,
Y.-C.
Lau
, and
W.
Wang
,
Appl. Phys. Lett.
120
,
112408
(
2022
).
9.
J. G.
Checkelsky
,
M.
Lee
,
E.
Morosan
,
R. J.
Cava
, and
N. P.
Ong
,
Phys. Rev. B
77
,
014433
(
2008
).
10.
D. A.
Mayoh
,
J.
Bouaziz
,
A. E.
Hall
,
J. B.
Staunton
,
M. R.
Lees
, and
G.
Balakrishnan
,
Phys. Rev. Res.
4
,
013134
(
2022
).
11.
X.
Zhou
,
W.
Feng
,
Y.
Li
, and
Y.
Yao
,
Nano Lett.
23
,
5680
(
2023
).
12.
B.
Van Laar
,
H.
Rietveld
, and
D.
Ijdo
,
J. Solid State Chem.
3
,
154
(
1971
).
13.
T.
Moriya
and
T.
Miyadai
,
Solid State Commun.
42
,
209
(
1982
).
14.
M.
Kataoka
and
O.
Nakanishi
,
J. Phys. Soc. Jpn.
50
,
3888
(
1981
).
15.
T.
Miyadai
,
K.
Kikuchi
,
H.
Kondo
,
S.
Sakka
,
M.
Arai
, and
Y.
Ishikawa
,
J. Phys. Soc. Jpn.
52
,
1394
(
1983
).
16.
I.
Dzyaloshinsky
,
J. Phys. Chem. Solids
4
,
241
(
1958
).
18.
Y.
Togawa
,
T.
Koyama
,
K.
Takayanagi
,
S.
Mori
,
Y.
Kousaka
et al,
Phys. Rev. Lett.
108
,
107202
(
2012
).
19.
Y.
Togawa
,
T.
Koyama
,
Y.
Nishimori
,
Y.
Matsumoto
,
S.
McVitie
et al,
Phys. Rev. B
92
,
220412
(
2015
).
20.
Y.
Togawa
,
J.
Kishine
,
P. A.
Nosov
,
T.
Koyama
,
G. W.
Paterson
et al,
Phys. Rev. Lett.
122
,
017204
(
2019
).
21.
L.
Wang
,
N.
Chepiga
,
D.-K.
Ki
,
L.
Li
,
F.
Li
et al,
Phys. Rev. Lett.
118
,
257203
(
2017
).
22.
M.
Mito
,
H.
Ohsumi
,
K.
Tsuruta
,
Y.
Kotani
,
T.
Nakamura
et al,
Phys. Rev. B
97
,
024408
(
2018
).
23.
K.
Tsuruta
,
M.
Mito
,
H.
Deguchi
,
J.
Kishine
,
Y.
Kousaka
,
J.
Akimitsu
, and
K.
Inoue
,
Phys. Rev. B
93
,
104402
(
2016
).
24.
N. J.
Ghimire
,
M. A.
McGuire
,
D. S.
Parker
,
B.
Sipos
,
S.
Tang
,
J.-Q.
Yan
,
B. C.
Sales
, and
D.
Mandrus
,
Phys. Rev. B
87
,
104403
(
2013
).
25.
D.
Braam
,
C.
Gomez
,
S.
Tezok
,
E. V. L.
de Mello
,
L.
Li
,
D.
Mandrus
,
H.-Y.
Kee
, and
J. E.
Sonier
,
Phys. Rev. B
91
,
144407
(
2015
).
26.
M.
Mito
,
T.
Tajiri
,
Y.
Kousaka
,
Y.
Togawa
,
J.
Akimitsu
,
J.-i.
Kishine
, and
K.
Inoue
,
Phys. Rev. B
105
,
104412
(
2022
).
27.
S. C.
de la Barrera
,
M. R.
Sinko
,
D. P.
Gopalan
,
N.
Sivadas
,
N.
Sivadas
et al,
Nat. Commun.
9
,
1427
(
2018
).
28.
K.
Du
,
F.-T.
Huang
,
J.
Kim
,
S. J.
Lim
,
K.
Gamage
et al,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2023337118
(
2021
).
29.
C.-H.
Zhang
,
H.
Algaidi
,
P.
Li
,
Y.
Yuan
, and
X.-X.
Zhang
,
Rare Met.
41
,
3005
(
2022
).
30.
R.
Zivieri
,
S.
Lumetti
, and
J.
Létang
,
Materials
16
,
7579
(
2023
).
31.
T. J.
Hicken
,
Z.
Hawkhead
,
M. N.
Wilson
,
B. M.
Huddart
,
A. E.
Hall
et al,
Phys. Rev. B
105
,
L060407
(
2022
).
32.
J.-i.
Yonemura
,
Y.
Shimamoto
,
T.
Kida
,
D.
Yoshizawa
,
Y.
Kousaka
et al,
Phys. Rev. B
96
,
184423
(
2017
).
33.
Y.
Liu
,
Z.
Hu
,
X.
Tong
,
E. D.
Bauer
, and
C.
Petrovic
,
Phys. Rev. Res.
4
,
013048
(
2022
).
34.
D.
Obeysekera
,
K.
Gamage
,
Y.
Gao
,
S.-W.
Cheong
, and
J.
Yang
,
Adv. Electron. Mater.
7
,
2100424
(
2021
).
35.
J.
Bouaziz
,
H.
Ishida
,
S.
Lounis
, and
S.
Blügel
,
Phys. Rev. Lett.
126
,
147203
(
2021
).
36.
Y.
Togawa
,
Y.
Kousaka
,
S.
Nishihara
,
K.
Inoue
,
J.
Akimitsu
,
A. S.
Ovchinnikov
, and
J.
Kishine
,
Phys. Rev. Lett.
111
,
197204
(
2013
).
37.
M.
Shinozaki
,
Y.
Masaki
,
R.
Aoki
,
Y.
Togawa
, and
Y.
Kato
,
Phys. Rev. B
97
,
214413
(
2018
).
38.
F.
Meng
,
W.
Liu
,
A.
Rahman
,
J.
Zhang
,
J.
Fan
et al,
Phys. Rev. B
107
,
144425
(
2023
).
39.
R.
Karplus
and
J. M.
Luttinger
,
Phys. Rev.
95
,
1154
(
1954
).
40.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
,
Rev. Mod. Phys.
82
,
1959
(
2010
).
44.
T.
Suzuki
,
R.
Chisnell
,
A.
Devarakonda
,
Y.-T.
Liu
,
W.
Feng
,
D.
Xiao
,
J. W.
Lynn
, and
J. G.
Checkelsky
,
Nat. Phys.
12
,
1119
(
2016
).
45.
D.
Maryenko
,
A. S.
Mishchenko
,
M. S.
Bahramy
,
A.
Ernst
,
J.
Falson
et al,
Nat. Commun.
8
,
14777
(
2017
).
46.
A.
Neubauer
,
C.
Pfleiderer
,
B.
Binz
,
A.
Rosch
,
R.
Ritz
,
P. G.
Niklowitz
, and
P.
Böni
,
Phys. Rev. Lett.
102
,
186602
(
2009
).
47.
N. A.
Porter
,
J. C.
Gartside
, and
C. H.
Marrows
,
Phys. Rev. B
90
,
024403
(
2014
).
48.
Y.
Li
,
N.
Kanazawa
,
X. Z.
Yu
,
A.
Tsukazaki
,
M.
Kawasaki
et al,
Phys. Rev. Lett.
110
,
117202
(
2013
).
49.
C.
Zhang
,
C.
Liu
,
J.
Zhang
,
Y.
Yuan
,
Y.
Wen
et al,
Adv. Mater.
35
,
2205967
(
2023
).
50.
B. K.
Saika
,
S.
Hamao
,
Y.
Majima
,
X.
Huang
,
H.
Matsuoka
et al,
Phys. Rev. Res
4
,
L042021
(
2022
).
51.
V.
Laliena
,
J.
Campo
, and
Y.
Kousaka
,
Phys. Rev. B
94
,
094439
(
2016
).
You do not currently have access to this content.