We report on the growth of AlPN on GaN/sapphire templates by metalorganic vapor phase epitaxy using tertiarybutylphosphine (tBP) and NH3 as group-V precursors. P is easy to incorporate into the group-III lattice site, forming PAl anti-site defects and shrinking lattice constants that are even beyond AlN since Al is larger than P. We found that higher temperatures favor P incorporation on the N-sublattice, forming AlPyN1−y, while growth temperatures below 1000 °C result in dominant P incorporation on the Al-sublattice, forming PAl anisites. Similarly, larger NH3 flows stabilize GaN, leading to flat interfaces, but favor the formation of PAl. Furthermore, the P incorporation into AlPyN1−y is non-linear. At very low tBP flows, it initially increases to reach a maximum. Further increasing the tBP flow increases mostly the incorporation of P on the Al-sublattice, and the c-lattice constant decreases again. This leaves a small window of low V/III ratios below 5 and low P/N ratios of 1% or smaller, leading up to ∼4% P incorporation at typical growth temperatures of GaN. However, at such low V/III ratios, GaN is not stable even with N2 carrier gas and requires optimized switching sequences to minimize its decomposition and preserve flat interfaces. Eventually, a 10 nm coherent layer of AlP0.01N0.99 could be reproducibly grown on top of GaN channels with a smooth surface, an abrupt AlPN/GaN interface, and a two-dimensional electron gas with an electron mobility of ∼675 cm2/V s and a sheet carrier density of 1.5 × 1013 cm−2 at room temperature.

1.
A. S. A.
Fletcher
and
D.
Nirmal
, “
A survey of gallium nitride HEMT for RF and high power applications
,”
Superlattices Microstruct.
109
,
519
537
(
2017
).
2.
M.
Asif Khan
,
A.
Bhattarai
,
J. N.
Kuznia
, and
D. T.
Olson
, “
High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction
,”
Appl. Phys. Lett.
63
(
9
),
1214
1215
(
1993
).
3.
M.
Asif Khan
,
J. W.
Yang
,
W.
Knap
,
E.
Frayssinet
,
X.
Hu
,
G.
Simin
,
P.
Prystawko
,
M.
Leszczynski
,
I.
Grzegory
,
S.
Porowski
,
R.
Gaska
,
M. S.
Shur
,
B.
Beaumont
,
M.
Teisseire
, and
G.
Neu
, “
GaN–AlGaN heterostructure field-effect transistors over bulk GaN substrates
,”
Appl. Phys. Lett.
76
(
25
),
3807
3809
(
2000
).
4.
V.
Kumar
,
W.
Lu
,
R.
Schwindt
,
A.
Kuliev
,
G.
Simin
,
J.
Yang
,
M.
Asif Khan
, and
I.
Adesida
, “
AlGaN/GaN HEMTs on SiC with fT of over 120 GHz
,”
IEEE Electron Device Lett.
23
(
8
),
455
457
(
2002
).
5.
Y.
Cao
and
D.
Jena
, “
High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions
,”
Appl. Phys. Lett.
90
(
18
),
182112
(
2007
).
6.
S. R.
Lee
,
D. D.
Koleske
,
K. C.
Cross
,
J. A.
Floro
,
K. E.
Waldrip
,
A. T.
Wise
, and
S.
Mahajan
, “
In situ measurements of the critical thickness for strain relaxation in AlGaN∕GaN heterostructures
,”
Appl. Phys. Lett.
85
(
25
),
6164
6166
(
2004
).
7.
Z.
Sitar
,
M. J.
Paisley
,
B.
Yan
,
J.
Ruan
,
W. J.
Choyke
, and
R. F.
Davis
, “
Growth of AlN/GaN layered structures by gas source molecular‐beam epitaxy
,”
J. Vac. Sci. Technol. B
8
(
2
),
316
322
(
1990
).
8.
N.
Grandjean
and
J.
Massies
, “
GaN and AlxGa1−xN molecular beam epitaxy monitored by reflection high-energy electron diffraction
,”
Appl. Phys. Lett.
71
(
13
),
1816
1818
(
1997
).
9.
J.
Kuzmik
, “
Power electronics on InAlN/(In)GaN: Prospect for a record performance
,”
IEEE Electron Device Lett.
22
(
11
),
510
512
(
2001
).
10.
D. S.
Lee
,
X.
Gao
,
S.
Guo
,
D.
Kopp
,
P.
Fay
, and
T.
Palacios
, “
300-GHz InAlN/GaN HEMTs with InGaN back barrier
,”
IEEE Electron Device Lett.
32
(
11
),
1525
1527
(
2011
).
11.
S.
Choi
,
H.
Jin Kim
,
Z.
Lochner
,
J.
Kim
,
R. D.
Dupuis
,
A. M.
Fischer
,
R.
Juday
,
Y.
Huang
,
T.
Li
,
J. Y.
Huang
,
F. A.
Ponce
, and
J.-H.
Ryou
, “
Origins of unintentional incorporation of gallium in AlInN layers during epitaxial growth, part I: Growth of AlInN on AlN and effects of prior coating
,”
J. Cryst. Growth
388
,
137
142
(
2014
).
12.
M.
Akiyama
,
T.
Kamohara
,
K.
Kano
,
A.
Teshigahara
,
Y.
Takeuchi
, and
N.
Kawahara
, “
Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering
,”
Adv. Mater.
21
(
5
),
593
596
(
2009
).
13.
S.
Leone
,
J.
Ligl
,
C.
Manz
,
L.
Kirste
,
T.
Fuchs
,
H.
Menner
,
M.
Prescher
,
J.
Wiegert
,
A.
Žukauskaitė
,
R.
Quay
, and
O.
Ambacher
, “
Metal-organic chemical vapor deposition of aluminum scandium nitride
,”
Phys. Status Solidi RRL
14
(
1
),
1900535
(
2020
).
14.
D.
Barisic
,
D.
Diether
,
C.
Maichle-Mössmer
, and
R.
Anwander
, “
Trimethylscandium
,”
J. Am. Chem. Soc.
141
(
35
),
13931
13940
(
2019
).
15.
I.
Streicher
,
S.
Leone
,
C.
Manz
,
L.
Kirste
,
M.
Prescher
,
P.
Waltereit
,
M.
Mikulla
,
R.
Quay
, and
O.
Ambacher
, “
Effect of AlN and AlGaN interlayers on AlScN/GaN heterostructures grown by metal–organic chemical vapor deposition
,”
Cryst. Growth Des.
23
(
2
),
782
791
(
2023
).
16.
I.
Streicher
,
S.
Leone
,
L.
Kirste
,
C.
Manz
,
P.
Straňák
,
M.
Prescher
,
P.
Waltereit
,
M.
Mikulla
,
R.
Quay
, and
O.
Ambacher
, “
Enhanced AlScN/GaN heterostructures grown with a novel precursor by metal–organic chemical vapor deposition
,”
Phys. Status Solidi RRL
17
(
2
),
2200387
(
2023
).
17.
M.
Pristovsek
,
D.
van Dinh
,
T.
Liu
, and
N.
Ikarashi
, “
Wurtzite AlPyN1−y: A new III-V compound semiconductor lattice-matched to GaN (0001)
,”
Appl. Phys. Express
13
(
11
),
111001
(
2020
).
18.
D.
Borovac
,
C.-K.
Tan
, and
N.
Tansu
, “
First-principle electronic properties of dilute-P AlNP deep ultraviolet semiconductor
,”
AIP Adv.
8
(
8
),
085119
(
2018
).
19.
M.
Pristovsek
, “
Wurtzite Al1−xGaxPyN1−y barrier layer growth for high electron mobility transistors
,”
J. Cryst. Growth
600
,
126908
(
2022
).
20.
Y.
Yao
,
Y.
Zhang
,
J.
Zhu
,
K.
Dang
,
C.
Su
,
J.
Ma
,
K.
Chen
,
B.
Wang
,
W.
Liu
,
S.
Xu
,
S.
Zhao
,
J.
Zhang
, and
Y.
Hao
, “
Study of the AlPN/GaN high electron mobility transistors with improved transconductance linearity
,”
Appl. Phys. Lett.
123
(
20
),
202104
(
2023
).
21.
Y.
Yao
,
Y.
Zhang
,
J.
Zhang
,
Y.
Li
,
J.
Ma
,
K.
Chen
,
J.
Zhu
,
S.
Xu
,
J.
Bai
,
B.
Cheng
,
S.
Zhao
, and
Y.
Hao
, “
Research on the mechanism and influence of P incorporation in N-rich nitride AlPN and growth of high quality AlPN/GaN HEMT
,”
Vacuum
216
,
112441
(
2023
).
22.
O. V.
Penkov
,
I. A.
Kopylets
,
M.
Khadem
, and
T.
Qin
, “
X-Ray Calc: A software for the simulation of X-ray reflectivity
,”
SoftwareX
12
,
100528
(
2020
).
23.
T.
Takayama
,
M.
Yuri
,
K.
Itoh
, and
J. S.
Harris
, Jr.
, “
Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model
,”
J. Appl. Phys
90
(
5
),
2358
2369
(
2001
).
24.
A. M.
Miller
,
M.
Lemon
,
M. A.
Choffel
,
S. R.
Rich
,
F.
Harvel
, and
D. C.
Johnson
, “
Extracting information from X-ray diffraction patterns containing Laue oscillations
,”
Z. Naturforsch., B
77
(
4–5
),
313
322
(
2022
).
25.
M.
Miyoshi
,
M.
Yamanaka
,
T.
Egawa
, and
T.
Takeuchi
, “
Epitaxial growth and characterization of approximately 300-nm-thick AlInN films nearly lattice-matched to c-plane GaN grown on sapphire
,”
Appl. Phys. Express
11
(
5
),
051001
(
2018
).
26.
S.
Horstmann
,
E.
Irran
, and
W.
Schnick
, “
Synthesis and crystal structure of phosphorus(V) nitride α-P3N5
,”
Angew. Chem., Int. Ed. Engl.
36
(
17
),
1873
1875
(
1997
).
27.
D.
Laniel
,
F.
Trybel
,
A.
Néri
,
Y.
Yin
,
A.
Aslandukov
,
T.
Fedotenko
,
S.
Khandarkhaeva
,
F.
Tasnádi
,
S.
Chariton
,
C.
Giacobbe
,
E. L.
Bright
,
M.
Hanfland
,
V.
Prakapenka
,
W.
Schnick
,
I. A.
Abrikosov
,
L.
Dubrovinsky
, and
N.
Dubrovinskaia
, “
Revealing phosphorus nitrides up to the megabar regime: Synthesis of α′-P3N5, δ-P3N5 and PN2
,”
Chem.–Eur. J.
28
(
62
),
e202201998
(
2022
).
28.
A. F.
Wells
,
Structural Inorganic Chemistry
, 4th ed (
Clarendon Press
,
Oxford
,
1975
).
29.
T.
Mattila
and
A.
Zunger
, “
Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys
,”
J. Appl. Phys.
85
(
1
),
160
167
(
1999
).
30.
O.
Ambacher
,
B.
Christian
,
N.
Feil
,
D. F.
Urban
,
C.
Elsässer
,
M.
Prescher
, and
L.
Kirste
, “
Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties
,”
J. Appl. Phys.
130
(
4
),
045102
(
2021
).
31.
Y.
Tsuda
,
H.
Mouri
,
M.
Araki
,
Y.
Ueta
,
T.
Yuasa
, and
M.
Taneya
, “
Characterization of the GaN-rich side of GaNP grown by metal-organic chemical vapor deposition
,”
Phys. Status Solidi B
240
(
2
),
404
407
(
2003
).
32.
K.
Fehse
,
A.
Dadgar
,
P.
Veit
,
J.
Bläsing
, and
A.
Krost
, “
Metalorganic chemical vapor phase epitaxy and structural properties of Ga1-xPxN on GaN/Si(111) substrates
,”
Appl. Phys. A
82
(
4
),
733
735
(
2006
).
33.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
(
1
),
011002
(
2013
).
34.
H.
Jacobs
and
R.
Krichgässner
, “
Hexamincyclotriphosphazenhemiammoniakat, P3N3(NH2)6 · 0,5 NH3, ein Produkt der Hochdruckammonolyse von weißem Phosphor
,”
Z. Anorg. Allg. Chem.
581
(
1
),
125
134
(
1990
).
35.
E. O.
Huffman
,
G.
Tarbutton
,
K. L.
Elmore
,
W. E.
Cate
,
H. K.
Walters
, Jr.
, and
G. V.
Elmore
, “
Synthesis of phosphorus nitrides
,”
J. Am. Chem. Soc.
76
(
24
),
6239
6243
(
1954
).
36.
A. V.
Lobanova
,
K. M.
Mazaev
,
R. A.
Talalaev
,
M.
Leys
,
S.
Boeykens
,
K.
Cheng
, and
S.
Degroote
, “
Effect of V/III ratio in AlN and AlGaN MOVPE
,”
J. Cryst. Growth
287
(
2
),
601
604
(
2006
).
37.
J.
Stellmach
,
M.
Frentrup
,
F.
Mehnke
,
M.
Pristovsek
,
T.
Wernicke
, and
M.
Kneissl
, “
MOVPE growth of semipolar (11–22) AlN on m-plane (10–10) sapphire
,”
J. Cryst. Growth
355
(
1
),
59
62
(
2012
).
38.
N.
Kobayashi
,
T.
Makimoto
,
Y.
Yamauchi
, and
Y.
Horikoshi
, “
Flow‐rate modulation epitaxy of GaAs and AlGaAs
,”
J. Appl. Phys.
66
(
2
),
640
651
(
1989
).
39.
X.
Yang
,
S.
Nitta
,
K.
Nagamatsu
,
S.-Y.
Bae
,
H.-J.
Lee
,
Y.
Liu
,
M.
Pristovsek
,
Y.
Honda
, and
H.
Amano
, “
Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy
,”
J. Cryst. Growth
482
,
1
8
(
2018
).
40.
M. A.
Khan
,
J. N.
Kuznia
,
J. M.
Van Hove
,
N.
Pan
, and
J.
Carter
, “
Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions
,”
Appl. Phys. Lett.
60
(
24
),
3027
3029
(
1992
).
41.
F.
Semond
,
P.
Lorenzini
,
N.
Grandjean
, and
J.
Massies
, “
High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecular-beam epitaxy
,”
Appl. Phys. Lett.
78
(
3
),
335
337
(
2001
).
You do not currently have access to this content.