Silicon nitride (Si3N4) photonic integrated circuits are rapidly developing in recent decades. The low loss of Si3N4 attracts significant attention and facilitates a wide range of applications in integrated photonics. In this work, we demonstrate the foundry fabrication of a 300-nm-thick 8-in. wafer-scale Si3N4 platform, with a microresonator intrinsic quality factor of up to 15×106, corresponding to an ultralow loss of 2.2 dB/m. Leveraging this platform, we develop a mature process design kit, achieving a single-mode waveguide propagation loss of less than 5 dB/m, an edge coupler loss of 1.3 dB, and an insertion loss of 0.07 dB for multimode interference couplers. Utilizing the processed Si3N4 chip, we realize a hybrid integrated tunable external cavity laser with a tuning range from 1534 to 1602 nm, a record-high side-mode suppression ratio of up to 76 dB, an optical power of 26 mW, and an intrinsic linewidth of down to 314 Hz. Our work lays a solid foundation for the further development of applications, including nonlinear optics, quantum optics, optical communications, and ranging.

1.
S.
Shekhar
,
W.
Bogaerts
,
L.
Chrostowski
,
J. E.
Bowers
,
M.
Hochberg
,
R.
Soref
, and
B. J.
Shastri
, “
Roadmapping the next generation of silicon photonics
,”
Nat. Commun.
15
(
1
),
751
(
2024
).
2.
E.
Agrell
,
M.
Karlsson
,
A. R.
Chraplyvy
,
D. J.
Richardson
,
P. M.
Krummrich
,
P.
Winzer
,
K.
Roberts
,
J. K.
Fischer
,
S. J.
Savory
,
B. J.
Eggleton
et al, “
Roadmap of optical communications
,”
J. Opt.
18
(
6
),
063002
(
2016
).
3.
N.
Margalit
,
C.
Xiang
,
S. M.
Bowers
,
A.
Bjorlin
,
R.
Blum
, and
J. E.
Bowers
, “
Perspective on the future of silicon photonics and electronics
,”
Appl. Phys. Lett.
118
(
22
),
220501
(
2021
).
4.
A.
Rahim
,
E.
Ryckeboer
,
A. Z.
Subramanian
,
S.
Clemmen
,
B.
Kuyken
,
A.
Dhakal
,
A.
Raza
,
A.
Hermans
,
M.
Muneeb
,
S.
Dhoore
et al, “
Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits
,”
J. Lightwave Technol.
35
(
4
),
639
649
(
2017
).
5.
D. J.
Blumenthal
,
R.
Heideman
,
D.
Geuzebroek
,
A.
Leinse
, and
C.
Roeloffzen
, “
Silicon nitride in silicon photonics
,”
Proc. IEEE
106
(
12
),
2209
2231
(
2018
).
6.
C.
Xiang
,
W.
Jin
, and
J. E.
Bowers
, “
Silicon nitride passive and active photonic integrated circuits: Trends and prospects
,”
Photonics Res.
10
(
6
),
A82
A96
(
2022
).
7.
B.
Stern
,
X.
Ji
,
Y.
Okawachi
,
A. L.
Gaeta
, and
M.
Lipson
, “
Battery-operated integrated frequency comb generator
,”
Nature
562
(
7727
),
401
405
(
2018
).
8.
B.
Shen
,
L.
Chang
,
J.
Liu
,
H.
Wang
,
Q.-F.
Yang
,
C.
Xiang
,
R. N.
Wang
,
J.
He
,
T.
Liu
,
W.
Xie
et al, “
Integrated turnkey soliton microcombs
,”
Nature
582
(
7812
),
365
369
(
2020
).
9.
C.
Xiang
,
J.
Liu
,
J.
Guo
,
L.
Chang
,
R. N.
Wang
,
W.
Weng
,
J.
Peters
,
W.
Xie
,
Z.
Zhang
,
J.
Riemensberger
et al, “
Laser soliton microcombs heterogeneously integrated on silicon
,”
Science
373
(
6550
),
99
103
(
2021
).
10.
L.
Chang
,
S.
Liu
, and
J. E.
Bowers
, “
Integrated optical frequency comb technologies
,”
Nat. Photonics
16
(
2
),
95
108
(
2022
).
11.
B.
Stern
,
X.
Ji
,
A.
Dutt
, and
M.
Lipson
, “
Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator
,”
Opt. Lett.
42
(
21
),
4541
4544
(
2017
).
12.
W.
Jin
,
Q.-F.
Yang
,
L.
Chang
,
B.
Shen
,
H.
Wang
,
M. A.
Leal
,
L.
Wu
,
M.
Gao
,
A.
Feshali
,
M.
Paniccia
et al, “
Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators
,”
Nat. Photonics
15
(
5
),
346
353
(
2021
).
13.
J.
Guo
,
C. A.
McLemore
,
C.
Xiang
,
D.
Lee
,
L.
Wu
,
W.
Jin
,
M.
Kelleher
,
N.
Jin
,
D.
Mason
,
L.
Chang
et al, “
Chip-based laser with 1-hertz integrated linewidth
,”
Sci. Adv.
8
(
43
),
eabp9006
(
2022
).
14.
P.
Marin-Palomo
,
J. N.
Kemal
,
M.
Karpov
,
A.
Kordts
,
J.
Pfeifle
,
M. H. P.
Pfeiffer
,
P.
Trocha
,
S.
Wolf
,
V.
Brasch
,
M. H.
Anderson
et al, “
Microresonator-based solitons for massively parallel coherent optical communications
,”
Nature
546
(
7657
),
274
279
(
2017
).
15.
K. Y.
Yang
,
C.
Shirpurkar
,
A. D.
White
,
J.
Zang
,
L.
Chang
,
F.
Ashtiani
,
M. A.
Guidry
,
D. M.
Lukin
,
S. V.
Pericherla
,
J.
Yang
et al, “
Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs
,”
Nat. Commun.
13
(
1
),
7862
(
2022
).
16.
X.
Zhang
,
Z.
Zhou
,
Y.
Guo
,
M.
Zhuang
,
W.
Jin
,
B.
Shen
,
Y.
Chen
,
J.
Huang
,
Z.
Tao
,
M.
Jin
et al, “
High-coherence parallelization in integrated photonics
,” arXiv:2312.08682 (
2023
).
17.
P.
Trocha
,
M.
Karpov
,
D.
Ganin
,
M. H. P.
Pfeiffer
,
A.
Kordts
,
S.
Wolf
,
J.
Krockenberger
,
P.
Marin-Palomo
,
C.
Weimann
,
S.
Randel
et al, “
Ultrafast optical ranging using microresonator soliton frequency combs
,”
Science
359
(
6378
),
887
891
(
2018
).
18.
J.
Riemensberger
,
A.
Lukashchuk
,
M.
Karpov
,
W.
Weng
,
E.
Lucas
,
J.
Liu
, and
T. J.
Kippenberg
, “
Massively parallel coherent laser ranging using a soliton microcomb
,”
Nature
581
(
7807
),
164
170
(
2020
).
19.
D. J. P.
Ellis
,
A. J.
Bennett
,
C.
Dangel
,
J. P.
Lee
,
J. P.
Griffiths
,
T. A.
Mitchell
,
T.-K.
Paraiso
,
P.
Spencer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit
,”
Appl. Phys. Lett.
112
(
21
),
211104
(
2018
).
20.
M.
Kues
,
C.
Reimer
,
J. M.
Lukens
,
W. J.
Munro
,
A. M.
Weiner
,
D. J.
Moss
, and
R.
Morandotti
, “
Quantum optical microcombs
,”
Nat. Photonics
13
(
3
),
170
179
(
2019
).
21.
V. D.
Vaidya
,
B.
Morrison
,
L. G.
Helt
,
R.
Shahrokshahi
,
D. H.
Mahler
,
M. J.
Collins
,
K.
Tan
,
J.
Lavoie
,
A.
Repingon
,
M.
Menotti
et al, “
Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device
,”
Sci. Adv.
6
(
39
),
eaba9186
(
2020
).
22.
Z. L.
Newman
,
V.
Maurice
,
T.
Drake
,
J. R.
Stone
,
T. C.
Briles
,
D. T.
Spencer
,
C.
Fredrick
,
Q.
Li
,
D.
Westly
,
B. R.
Ilic
et al, “
Architecture for the photonic integration of an optical atomic clock
,”
Optica
6
(
5
),
680
685
(
2019
).
23.
A.
Dutt
,
C.
Joshi
,
X.
Ji
,
J.
Cardenas
,
Y.
Okawachi
,
K.
Luke
,
A. L.
Gaeta
, and
M.
Lipson
, “
On-chip dual-comb source for spectroscopy
,”
Sci. Adv.
4
(
3
),
e1701858
(
2018
).
24.
H.
Guo
,
W.
Weng
,
J.
Liu
,
F.
Yang
,
W.
Hänsel
,
C. S.
Brès
,
L.
Thévenaz
,
R.
Holzwarth
, and
T. J.
Kippenberg
, “
Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy
,”
Optica
7
(
9
),
1181
1188
(
2020
).
25.
I.
Kudelin
,
W.
Groman
,
Q.-X.
Ji
,
J.
Guo
,
M. L.
Kelleher
,
D.
Lee
,
T.
Nakamura
,
C. A.
McLemore
,
P.
Shirmohammadi
,
S.
Hanifi
et al, “
Photonic chip-based low-noise microwave oscillator
,”
Nature
627
(
8004
),
534
539
(
2024
).
26.
S.
Sun
,
B.
Wang
,
K.
Liu
,
M. W.
Harrington
,
F.
Tabatabaei
,
R.
Liu
,
J.
Wang
,
S.
Hanifi
,
J. S.
Morgan
,
M.
Jahanbozorgi
et al, “
Integrated optical frequency division for microwave and mmWave generation
,”
Nature
627
(
8004
),
540
545
(
2024
).
27.
Y.
Zhao
,
J. K.
Jang
,
G. J.
Beals
,
K. J.
McNulty
,
X.
Ji
,
Y.
Okawachi
,
M.
Lipson
, and
A. L.
Gaeta
, “
All-optical frequency division on-chip using a single laser
,”
Nature
627
(
8004
),
546
552
(
2024
).
28.
M. W.
Puckett
,
K.
Liu
,
N.
Chauhan
,
Q.
Zhao
,
N.
Jin
,
H.
Cheng
,
J.
Wu
,
R. O.
Behunin
,
P. T.
Rakich
,
K. D.
Nelson
et al, “
422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth
,”
Nat. Commun.
12
(
1
),
934
(
2021
).
29.
K.
Liu
,
N.
Jin
,
H.
Cheng
,
N.
Chauhan
,
M. W.
Puckett
,
K. D.
Nelson
,
R. O.
Behunin
,
P. T.
Rakich
, and
D. J.
Blumenthal
, “
Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380  μW threshold Brillouin lasing
,”
Opt. Lett.
47
(
7
),
1855
1858
(
2022
).
30.
Y.
Zhang
,
J.
Zhan
,
S.
Veilleux
, and
M.
Dagenais
, “
Silicon nitride Fabry-Perot Bragg grating nanoresonator with ultrahigh intrinsic Q
,” in
Conference on Lasers and Electro-Optics (CLEO)
(
IEEE
,
2022
), pp.
1
2
.
31.
M. H. P.
Pfeiffer
,
J.
Liu
,
A. S.
Raja
,
T.
Morais
,
B.
Ghadiani
, and
T. J.
Kippenberg
, “
Ultra-smooth silicon nitride waveguides based on the damascene reflow process: Fabrication and loss origins
,”
Optica
5
(
7
),
884
892
(
2018
).
32.
J.
Liu
,
G.
Huang
,
R. N.
Wang
,
J.
He
,
A. S.
Raja
,
T.
Liu
,
N. J.
Engelsen
, and
T. J.
Kippenberg
, “
High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits
,”
Nat. Commun.
12
(
1
),
2236
(
2021
).
33.
L.
Chrostowski
,
H.
Shoman
,
M.
Hammood
,
H.
Yun
,
J.
Jhoja
,
E.
Luan
,
S.
Lin
,
A.
Mistry
,
D.
Witt
,
N. A. F.
Jaeger
et al, “
Silicon photonic circuit design using rapid prototyping foundry process design kits
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
5
),
1
26
(
2019
).
34.
F.
Vanier
,
C.
La Mela
,
A.
Hayat
, and
Y.-A.
Peter
, “
Intrinsic quality factor determination in whispering gallery mode microcavities using a single stokes parameters measurement
,”
Opt. Express
19
(
23
),
23544
23553
(
2011
).
35.
L.-W.
Luo
,
G. S.
Wiederhecker
,
J.
Cardenas
,
C.
Poitras
, and
M.
Lipson
, “
High quality factor etchless silicon photonic ring resonators
,”
Opt. Express
19
(
7
),
6284
6289
(
2011
).
36.
Z.
Ye
,
H.
Jia
,
Z.
Huang
,
C.
Shen
,
J.
Long
,
B.
Shi
,
Y.-H.
Luo
,
L.
Gao
,
W.
Sun
,
H.
Guo
et al, “
Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits
,”
Photonics Res.
11
(
4
),
558
568
(
2023
).
37.
X.
Mu
,
S.
Wu
,
L.
Cheng
, and
H. Y.
Fu
, “
Edge couplers in silicon photonic integrated circuits: A review
,”
Appl. Sci.
10
(
4
),
1538
(
2020
).
38.
L.
Cheng
,
S.
Mao
,
Z.
Li
,
Y.
Han
, and
H. Y.
Fu
, “
Grating couplers on silicon photonics: Design principles, emerging trends and practical issues
,”
Micromachines
11
(
7
),
666
(
2020
).
39.
A.
Maese-Novo
,
R.
Halir
,
S.
Romero-García
,
D.
Pérez-Galacho
,
L.
Zavargo-Peche
,
A.
Ortega-Moñux
,
I.
Molina-Fernández
,
J. G.
Wangüemert-Pérez
, and
P.
Cheben
, “
Wavelength independent multimode interference coupler
,”
Opt. Express
21
(
6
),
7033
7040
(
2013
).
40.
Y.
Ma
,
Y.
Zhang
,
S.
Yang
,
A.
Novack
,
R.
Ding
,
A. E.-J.
Lim
,
G.-Q.
Lo
,
T.
Baehr-Jones
, and
M.
Hochberg
, “
Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect
,”
Opt. Express
21
(
24
),
29374
29382
(
2013
).
41.
A.
Rickman
,
G. T.
Reed
,
B. L.
Weiss
, and
F.
Namavar
, “
Low-loss planar optical waveguides fabricated in SIMOX material
,”
IEEE Photonics Technol. Lett.
4
(
6
),
633
635
(
1992
).
42.
M. A.
Tran
,
D.
Huang
, and
J. E.
Bowers
, “
Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration
,”
APL Photonics
4
(
11
),
111101
(
2019
).
43.
Y.
Gao
,
J.-C.
Lo
,
S.
Lee
,
R.
Patel
,
L.
Zhu
,
J.
Nee
,
D.
Tsou
,
R.
Carney
, and
J.
Sun
, “
High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control
,”
J. Lightwave Technol.
38
(
2
),
265
271
(
2020
).
44.
M.
Li
,
L.
Chang
,
L.
Wu
,
J.
Staffa
,
J.
Ling
,
U. A.
Javid
,
S.
Xue
,
Y.
He
,
R.
Lopez-Rios
,
T. J.
Morin
et al, “
Integrated Pockels laser
,”
Nat. Commun.
13
(
1
),
5344
(
2022
).
45.
Z.
Yuan
,
H.
Wang
,
P.
Liu
,
B.
Li
,
B.
Shen
,
M.
Gao
,
L.
Chang
,
W.
Jin
,
A.
Feshali
,
M.
Paniccia
et al, “
Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements
,”
Opt. Express
30
(
14
),
25147
25161
(
2022
).
You do not currently have access to this content.