In this Letter, we combine first-principles calculations with the non-adiabatic molecular dynamics (NAMD) method to investigate the photocatalytic and excited-state properties of blue phosphorene (BlueP). Doping with Group III A elements not only maintains an appropriate bandgap and band edge positions for photocatalytic water splitting but also converts the indirect bandgap of BlueP to a direct bandgap, significantly enhancing photon absorption efficiency. The dopants effectively improve optical absorption in the visible and ultraviolet light regions, potentially enabling a solar-to-hydrogen conversion efficiency of 22.3% in the photocatalytic water splitting process. In NAMD calculations, we consider the dynamics of the electron–hole pair recombination process between the valence band maximum and conduction band minimum. We demonstrate the regulatory impact of dopant elements, temperature, and non-adiabatic coupling strength on the exciton lifetime of doped BlueP through ab initio molecular dynamics and NAMD methods. This study reveals the relationship between the charge transfer mechanism and non-adiabatic coupling in low-dimensional materials, offering valuable insights into the excited-state properties of optoelectronic materials. Ultimately, our findings contribute to the development of tunable, long-lived exciton lifetimes and high carrier mobilities in doped BlueP, which hold significant potential for photocatalytic water splitting to generate hydrogen.

1.
M.
Wang
,
M.
Huang
,
D.
Luo
,
Y.
Li
,
M.
Choe
,
W.
Seong
,
M.
Kim
,
S.
Jin
,
M.
Wang
,
S.
Chatterjee
,
Y.
Kwon
,
Z.
Lee
, and
R.
Ruoff
, “
Single-crystal, large-area, fold-free monolayer graphene
,”
Nature
596
,
519
(
2021
).
2.
T.
Ku
,
M.
Zhou
,
Q.
Li
,
Y.
Shin
,
J.
Shi
,
C.
Burch
,
L.
Anderson
,
A.
Pierce
,
Y.
Xie
,
A.
Hamo
,
U.
Vool
,
H.
Zhang
,
F.
Casola
,
T.
Taniguchi
,
K.
Watanabe
,
M.
Fogler
,
P.
Kim
,
A.
Yacoby
, and
R.
Walsworth
, “
Imaging viscous flow of the Dirac fluid in graphene
,”
Nature
583
,
537
(
2020
).
3.
J.
Deb
,
N.
Seriani
, and
U.
Sarkar
, “
Ultrahigh carrier mobility of penta-graphene: A first-principle study
,”
Physica E
127
,
114507
(
2020
).
4.
K.
Novoselov
,
A.
Geim
,
S.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S.
Dubonos
,
I.
Grigorieva
, and
A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
5.
Y.
Wang
,
S.
Li
,
H.
Yang
, and
J.
Luo
, “
Progress in the functional modification of graphene/graphene oxide: A review
,”
RSC Adv.
10
,
15328
15345
(
2020
).
6.
J.
Coleman
,
M.
Lotya
,
A.
O'Neill
,
S.
Bergin
, and
V.
Nicolosi
, “
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
,”
Science
331
,
568
571
(
2011
).
7.
T.
Su
,
Q.
Shao
,
Z.
Qin
,
Z.
Guo
, and
Z.
Wu
, “
Role of interfaces in two-dimensional photocatalyst for water splitting
,”
ACS Catal.
8
,
2253
2276
(
2018
).
8.
H.
Wang
,
X.
Liu
,
P.
Niu
,
S.
Wang
,
J.
Shi
, and
L.
Li
, “
Porous two-dimensional materials for photocatalytic and electrocatalytic applications
,”
Matter
2
,
1377
1413
(
2020
).
9.
X.
Fei
,
H.
Tan
,
B.
Cheng
,
B.
Zhu
, and
L.
Zhang
, “
2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations
,”
Acta Phys.-Chim. Sin.
37
,
2010027
(
2021
).
10.
S.
Li
,
Y.
Zhang
, and
H.
Huang
, “
Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting
,”
J. Energy Chem.
67
,
745
779
(
2022
).
11.
S.
Zhu
,
Q.
Liang
,
Y.
Xu
,
H.
Fu
, and
X.
Xiao
, “
Facile solvothermal synthesis of black phosphorus nanosheets from red phosphorus for efficient photocatalytic hydrogen evolution
,”
Eur. J. Inorg. Chem.
2020
,
773
779
.
12.
W.
He
,
H.
Dong
,
P.
Zhao
,
Y.
Huang
,
B.
Wang
,
Z.
Gan
,
H.
Lu
,
R.
Zhang
,
L.
Sui
,
L.
Dong
, and
L.
Yu
, “
Black phosphorus-TiF3 photocatalyst for hydrogen production with an excellent capacity
,”
J. Alloys Compd.
883
,
160775
(
2021
).
13.
M.
Valt
,
M.
Caporali
,
B.
Fabbri
,
A.
Gaiardo
,
S.
Krik
,
E.
Iacob
,
L.
Vanzetti
,
C.
Malagu
,
M.
Banchelli
,
C.
D'Andrea
,
M.
Serrano
,
M.
Vanni
,
M.
Peruzzini
, and
V.
Guidi
, “
Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities
,”
ACS Appl. Mater. Interfaces
13
,
44711
44722
(
2021
).
14.
X.
Li
,
L.
Xiao
,
L.
Zhou
,
Q.
Xu
,
J.
Weng
,
J.
Xu
, and
B.
Liu
, “
Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting
,”
Angew. Chem., Int. Ed.
59
,
21106
21113
(
2020
).
15.
C.
Xu
,
Y.
Xu
,
M.
Yang
,
Y.
Chang
,
A.
Nie
,
Z.
Liu
,
J.
Wang
, and
Z.
Luo
, “
Black-phosphorus-incorporated hydrogel as a conductive and biodegradable platform for enhancement of the neural differentiation of mesenchymal stem cells
,”
Adv. Funct. Mater.
30
,
30
(
2020
).
16.
X.
Xu
,
Y.
Jiang
,
M.
Wang
,
H.
Wang
,
C.
Lu
, and
H.
Yang
, “
Biodegradable black-phosphorus-nanosheet-based nanoagent for enhanced chemo-photothermal therapy
,”
Part. Part. Syst. Charact.
37
,
2000243
(
2020
).
17.
Z.
Zhu
and
D.
Tománek
, “
Semiconducting layered blue phosphorus: A computational study
,”
Phys. Rev. Lett.
112
,
176802
(
2014
).
18.
J.
Xiao
,
M.
Long
,
X.
Zhang
,
J.
Ouyang
,
H.
Xu
, and
Y.
Gao
, “
Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets
,”
Sci. Rep.
5
,
9961
(
2015
).
19.
Y.
Liu
,
Y.
Shi
,
H.
Yin
, and
C.
Yang
, “
Two-dimensional BP/ β-AsP van der Waals heterostructures as promising photocatalyst for water splitting
,”
Appl. Phys. Lett.
117
,
063901
(
2020
).
20.
Y.
Liu
,
F.
Wan
,
B.
Li
,
X.
Lv
,
C.
Yang
, and
Y.
Shi
, “
Internal electric fields in asymmetric single-layer lattices for enhancing photocatalytic solar-to-hydrogen efficiency
,”
J. Mater. Chem. A
11
,
21713
21720
(
2023
).
21.
Q.
Zheng
,
W.
Chu
,
C.
Zhao
,
L.
Zhang
,
H.
Guo
,
Y.
Wang
,
X.
Jiang
, and
J.
Zhao
, “
Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems
,”
WIREs Comput. Mol. Sci.
9
,
e1411
(
2019
).
22.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996a
).
23.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996b
).
24.
P.
Blochl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
25.
G.
Kresse
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
26.
Q.
Li
,
H.
Liu
,
H.
Yang
, and
Y.
Zheng
, “
High carrier mobilities and tunable band structures in two-dimensional MNH2 (M, N= C, Si, Ge) monolayers
,”
Appl. Surf. Sci.
615
,
156197
(
2023
).
27.
H.
Dong
,
J.
Zhao
,
H.
Yang
, and
Y.
Zheng
, “
Tunable long-lived exciton lifetime in single-layer two-dimensional LiAlTe2
,”
Phys. Rev. Mater.
6
,
104001
(
2022
).
28.
Y.
Liu
,
Y.
Shi
, and
C.
Yang
, “
Two-dimensional MoSSe/g-GeC van der Waals heterostructure as promising multifunctional system for solar energy conversion
,”
Appl. Surf. Sci.
545
,
148952
(
2021
).
29.
J.
Chen
,
J.
Xi
,
D.
Wang
, and
Z.
Shuai
, “
Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction
,”
J. Phys. Chem. Lett.
4
,
1443
1448
(
2013
).
30.
J.
Bardeen
and
W.
Shockley
, “
Deformation potentials and mobilities in non-polar crystals
,”
Phys. Rev.
80
,
72
80
(
1950
).
31.
S.
Li
,
L.
Lin
,
W.
Luo
,
L.
Yao
, and
Z.
Zhang
, “
Effects of different edge contacts on the photocatalytic and optical properties of blue phosphorene/arsenene lateral heterostructures
,”
Semicond. Sci. Technol.
36
,
075022
(
2021
).
32.
J.
Tang
,
W.
Xiao
, and
L.
Wang
, “
Stability and electronic structure of two-dimensional arsenic phosphide monolayer
,”
Mater. Sci. Eng. B
228
,
206
212
(
2018
).
33.
J.
Wang
,
M.
Shi
,
G.
Yi
,
L.
Wang
,
S.
Lei
,
K.
Xu
,
S.
Li
, and
J.
Mu
, “
Computational prediction of Mo2@g-C6N6 monolayer as an efficient electrocatalyst for N2 reduction
,”
Chin. Chem. Lett.
33
,
4623
4627
(
2022
).
34.
J.
Wang
,
G.
Yi
,
S.
Guo
,
J.
Wang
,
S.
Li
,
K.
Xu
,
W.
Wang
, and
S.
Lei
, “
Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced co reduction toward C2 products
,”
Chin. Chem. Lett.
35
,
109050
(
2024
).
35.
M.
Jakhar
and
A.
Kumar
, “
Tunable photocatalytic water splitting and solar-to-hydrogen efficiency in β-PdSe2 monolayer
,”
Catal. Sci. Technol.
11
,
6445
6454
(
2021
).
36.
I. C.
Man
,
H.-Y.
Su
,
F.
Calle-Vallejo
,
H. A.
Hansen
,
J. I.
Martínez
,
N. G.
Inoglu
,
J. R.
Kitchin
,
T. F.
Jaramillo
,
J. K.
Nørskov
, and
J.
Rossmeisl
, “
Universality in oxygen evolution electrocatalysis on oxide surfaces
,”
ChemCatChem
3
,
1159
(
2011
).
37.
C.
Fu
,
J.
Sun
,
Q.
Luo
,
X.
Li
,
W.
Hu
, and
J.
Yang
, “
Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting
,”
Nano Lett.
18
,
6312
6317
(
2018
).
38.
L.
Zhao
,
Y.
Li
,
G.
Zhou
,
S.
Lei
,
J.
Tan
,
L.
Lin
, and
J.
Wang
, “
First-principles calculations of stability of graphene-like BC3 monolayer and its high-performance potassium storage
,”
Chin. Chem. Lett.
32
,
900
905
(
2021
).
39.
S.
Li
,
M.
Shi
,
J.
Yu
,
S.
Li
,
S.
Lei
,
L.
Lin
, and
J.
Wang
, “
Two-dimensional blue-phase CX (X = S, Se) monolayers with high carrier mobility and tunable photocatalytic water splitting capability
,”
Chin. Chem. Lett.
32
,
1977
1982
(
2021
).
40.
Q.
Zheng
,
W. A.
Saidi
,
Y.
Xie
,
Z.
Lan
,
O. V.
Prezhdo
,
H.
Petek
, and
J.
Zhao
, “
Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface
,”
Nano Lett.
17
(
10
),
6435
6442
(
2017
).
41.
A. V.
Akimov
and
O. V.
Prezhdo
, “
The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems
,”
J. Chem. Theory Comput.
9
(
11
),
4959
4972
(
2013
).
42.
A. V.
Akimov
and
O. V.
Prezhdo
, “
Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction
,”
J. Chem. Theory Comput.
10
(
2
),
789
804
(
2014
).
You do not currently have access to this content.