The impact of heavy ion irradiation on the β-Ga2O3 p-n diode and its physical mechanism have been studied in this Letter. After the irradiation fluence of 1 × 108 cm−2, it is observed that the electrical performance of the device is significantly degraded. The forward current density (JF) is reduced by 49.4%, the reverse current density (JR) is increased by more than two orders of magnitude, and the breakdown voltage (VBR) is decreased by 30%. Based on the results of the deep-level transient spectroscopy measurement, it is concluded that acceptor-like traps generated with an energy level of EC-0.75 eV in the β-Ga2O3 drift layer dominate the JF degradation of the device, which are most likely related to Ga vacancies. These acceptor-like traps result in the reduction of change carrier concentration, which in turn leads to a decrease in JF. In addition, according to the conductive atomic force microscope measurements and theoretical calculation, it is clearly observed that the latent tracks induced by heavy ion irradiation can act as leakage paths, leading to a significant degradation of JR and VBR.

1.
A. F. M.
Anhar Uddin Bhuiyan
,
Z. X.
Feng
,
H. L.
Huang
,
L. Y.
Meng
,
J. W.
Hwang
, and
H. P.
Zhao
,
APL Mater.
9
,
101109
(
2021
).
2.
L. Y.
Meng
,
Z. X.
Feng
,
A. F. M. A. U.
Bhuiyan
, and
H. P.
Zhao
,
Cryst. Growth Des.
22
,
3896
(
2022
).
3.
E.
Korhonen
,
F.
Tuomisto
,
D.
Gogova
,
G.
Wagner
,
M.
Baldini
,
Z.
Galazka
,
R.
Schewski
, and
M.
Albrecht
,
Appl. Phys. Lett.
106
,
242103
(
2015
).
4.
H. T.
Gao
,
S.
Muralidharan
,
N.
Pronin
,
M. R.
Karim
,
S. M.
White
,
T.
Asel
,
G.
Foster
,
S.
Krishnamoorthy
,
S.
Rajan
,
L. R.
Cao
,
M.
Higashiwaki
,
H. V.
Wenckstern
,
M.
Grundmann
,
H. P.
Zhao
,
D. C.
Look
, and
L. J.
Brillson
,
Appl. Phys. Lett.
112
,
242102
(
2018
).
5.
E.
Farzana
,
M. F.
Chaiken
,
T. E.
Blue
,
A. R.
Arehart
, and
S. A.
Ringel
,
APL Mater.
7
,
022502
(
2019
).
6.
Y. H.
Hong
,
X. F.
Zheng
,
Y. L.
He
,
H.
Zhang
,
Z. J.
Yuan
,
X. Y.
Zhang
,
F.
Zhang
,
Y. Z.
Wang
,
X. L.
Lu
,
W.
Mao
,
X. H.
Ma
, and
Y.
Hao
,
Appl. Phys. Lett.
121
,
212102
(
2022
).
7.
Y. H.
Hong
,
X. F.
Zheng
,
Y. L.
He
,
F.
Zhang
,
X. Y.
Zhang
,
X. C.
Wang
,
J. N.
Li
,
D. P.
Wang
,
X. L.
Lu
,
H. B.
Han
,
X. H.
Ma
, and
Y.
Hao
,
Appl. Phys. Lett.
119
,
132103
(
2021
).
8.
Z. Z.
Hu
,
H.
Zhou
,
Q.
Feng
,
J. C.
Zhang
,
C. F.
Zhang
,
K.
Dang
,
Y. C.
Cai
,
Z. Q.
Feng
,
Y. Y.
Gao
,
X. W.
Kang
, and
Y.
Hao
,
IEEE Electron Device Lett.
39
(10),
1564
1567
(
2018
).
9.
J. C.
Yang
,
Z. T.
Chen
,
F.
Ren
,
S. J.
Pearton
,
G.
Yang
,
J.
Kim
,
J.
Lee
,
E.
Flitsiyan
,
L.
Chernyak
, and
A.
Kuramata
,
J. Vac. Sci. Technol. B
36
(
1
),
011206
(
2018
).
10.
S. Z.
Yue
,
Y. Z.
Wang
,
X. F.
Zheng
,
A. L.
Pan
,
Y. H.
Hong
,
X. H.
Wang
,
S. Y.
Gong
,
T.
Zhu
,
F.
Zhang
,
X. H.
Ma
, and
Y.
Hao
,
Appl. Phys. Lett.
124
,
122105
(
2024
).
11.
G.
Yang
,
S.
Jang
,
F.
Ren
,
S. J.
Pearton
, and
J.
Kim
,
ACS Appl. Mater. Interfaces
9
(
46
),
40471
40476
(
2017
).
12.
S.
Islam
,
A.
Senarath
,
E.
Farzana
,
D.
Ball
,
A.
Sengupta
,
N.
Hendricks
,
A.
Bhattacharyya
,
R.
Reed
,
E.
Zhang
,
J.
Speck
,
D.
Fleetwood
, and
R.
Schrimpf
,
IEEE Trans Nucl Sci.
71
,
515
(
2024
).
13.
R.
Cadena
,
D.
Ball
,
S.
Islam
,
A.
Senarath
,
E. X.
Zhang
,
M.
McCurdy
,
E.
Farzana
,
J.
Speck
,
N.
Karom
, and
A.
O'Hara
,
IEEE Trans. Nucl. Sci.
70
,
363
(
2023
).
14.
N.
Manikanthababu
,
B. R.
Tak
,
K.
Prajna
,
S.
Sarkar
,
K.
Asokan
,
D.
Kanjilal
,
S. R.
Barman
,
R.
Singh
, and
B. K.
Panigrahi
,
Appl. Phys. Lett.
117
,
142105
(
2020
).
15.
W. S.
Ai
,
J.
Liu
,
Q.
Feng
,
P. F.
Zhai
, and
Y. M.
Sun
,
Chin. Phys. B
30
,
056110
(
2021
).
16.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods B
268
,
1818
(
2010
).
17.
Y.
Tang
,
L.
Wang
,
X. W.
Cai
,
P.
Lu
, and
B.
Li
,
Appl. Phys. Lett.
122
,
022101
(
2023
).
18.
S. Z.
Yue
,
X. F.
Zheng
,
Y. H.
Hong
,
X. Y.
Zhang
,
F.
Zhang
,
Y. Z.
Wang
,
X. H.
Ma
, and
Y.
Hao
,
IEEE Trans Electron Dev.
70
,
3026
(
2023
).
19.
X. F.
Zheng
,
S. S.
Dong
,
P.
Ji
,
C.
Wang
,
Y. L.
He
,
L.
Lv
,
X. H.
Ma
, and
Y.
Hao
,
Appl. Phys. Lett.
112
,
233504
(
2018
).
20.
J. B.
Varley
,
A.
Janotti
,
C.
Franchini
, and
C. G.
Van de Walle
,
Phys. Rev. B
85
,
081109
(
2012
).
21.
A. Y.
Polyakov
,
V. I.
Nikolaev
,
E. B.
Yakimov
,
F.
Ren
,
S. J.
Pearton
, and
J.
Kim
,
J. Vac. Sci. Technol. A
40
(
2
),
020804
(
2022
).
22.
A. I.
Titov
and
S. O.
Kucheyev
,
J. Appl. Phys.
92
,
5740
(
2002
).
23.
A.
Kumar
,
R.
Singh
,
P.
Kumar
,
U. B.
Singh
,
K.
Asokan
,
P. A.
Karaseov
,
A. I.
Titov
, and
D.
Kanjilal
,
J. Appl. Phys.
123
(
16
),
161539
(
2018
).
24.
S. M.
Sze
,
K. K.
Ng
, and
D. K.
Schroder
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons, Inc
.,
2006
).
25.
W.
Li
,
D.
Jena
, and
H. G.
Xing
,
J. Appl. Phys.
131
(
1
),
015702
(
2022
).
26.
J. F.
McGlone
,
H.
Ghadi
,
E.
Cornuelle
,
A.
Armstrong
,
G.
Burns
,
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
H. P.
Zhao
,
A. R.
Arehart
, and
S. A.
Ringel
,
J. Appl. Phys.
133
,
045702
(
2023
).
27.
S. Z.
Yue
,
Z. G.
Zhang
,
Z. W.
Chen
,
X. F.
Zheng
,
L.
Wang
,
Y. M.
Huang
,
Y.
Huang
,
C.
Peng
, and
Z. F.
Lei
,
IEEE Trans Electron Dev.
68
,
2667
(
2021
).
28.
Z. F.
Lei
,
H. X.
Guo
,
M. H.
Tang
,
C.
Zeng
,
Z. G.
Zhang
,
H.
Chen
,
Y. F.
En
,
Y.
Huang
,
Y. Q.
Chen
, and
C.
Peng
,
Microelectron. Reliab.
80
,
312
(
2018
).
29.
P. P.
Hu
,
J.
Liu
,
S. X.
Zhang
,
K.
Maaz
,
J.
Zeng
,
P. F.
Zhai
,
L. J.
Xu
,
Y. R.
Cao
,
J. L.
Duan
,
Z. Z.
Li
,
Y. M.
Sun
, and
X. H.
Ma
,
Nucl. Instrum. Methods Phys. Res. Sect. B
430
,
59
(
2018
).
You do not currently have access to this content.