This work explores polyanionic phosphate-type α-Zn3(PO4)2 (ZP) as a negative electrode in lithium-ion batteries. It has a high theoretical capacity of 278 mA h g−1. The crystal structure of ZP is elucidated, and Patterson's electron density profiling is performed to understand the possible site of lithiation. To address the polaron-driven electrical insulation common to phosphates, we use superficial carbon coating (ZP/C). Furthermore, the electrochemical analysis of ZP and ZP/C is performed to validate the half-cell performance and Li+ kinetics. ZP/C delivers a high capacity of 260 mA h g−1 at 0.1 C. The positive effect of carbon coating is evident from a 100-fold increase in lithium diffusion coefficient from the galvanostatic intermittent titration technique. In addition, temperature-driven capacity performance is analyzed at −10, 25, and 50 °C. Temperature gradient charge–discharge is performed between −10 and −5 °C, where the discharge capacity increases from 70 to 100 mA h g−1 at 1 C rate, extending the application toward low-temperature non-carbonaceous energy storage solutions.

1.
J.
Zhang
,
C.
Liang
, and
J. B.
Dunn
,
Environ. Sci. Technol.
57
(
8
),
3402
3414
(
2023
).
2.
G. F. I.
Toki
,
M. K.
Hossain
,
W. U.
Rehman
,
R. Z. A.
Manj
,
L.
Wang
, and
J.
Yang
,
Ind. Chem. Mater.
2
,
226
269
(
2024
).
3.
A.
Franco Gonzalez
,
N. H.
Yang
, and
R. S.
Liu
,
J. Phys. Chem. C
121
(
50
),
27775
27787
(
2017
).
4.
J.
Asenbauer
,
T.
Eisenmann
,
M.
Kuenzel
,
A.
Kazzazi
,
Z.
Chen
, and
D.
Bresser
,
Sustainable Energy Fuels
4
(
11
),
5387
5416
(
2020
).
5.
S.
Wang
,
W.
Quan
,
Z.
Zhu
,
Y.
Yang
,
Q.
Liu
,
Y.
Ren
,
X.
Zhang
,
R.
Xu
,
Y.
Hong
,
Z.
Zhang
,
K.
Amine
,
Z.
Tang
,
J.
Lu
, and
J.
Li
,
Nat Commun.
8
(
1
),
627
(
2017
).
6.
S.
OV
,
A.
Dorai
,
J.
Kawamura
, and
M.
Ramaswamy
,
Appl. Phys. Lett.
122
(
10
),
103904
(
2023
).
7.
X.
Xu
,
F.
Xiong
,
J.
Meng
,
X.
Wang
,
C.
Niu
,
Q.
An
, and
L.
Mai
,
Adv. Funct. Mater.
30
(
10
),
1904398
(
2020
).
8.
M. H.
Hossain
,
M. A.
Chowdhury
,
N.
Hossain
,
M. A.
Islam
, and
M. H.
Mobarak
,
Chem. Eng. J. Adv.
16
,
100569
(
2023
).
9.
M.
Wang
,
T.
Chen
,
T.
Liao
,
X.
Zhang
,
B.
Zhu
,
H.
Tang
, and
C.
Dai
,
RSC Adv.
11
(
2
),
1200
1221
(
2021
).
10.
T. S.
Munonde
and
M. C.
Raphulu
,
J. Energy Storage
78
,
110064
(
2024
).
11.
J. S.
Chen
and
X. W.
Lou
,
Small
9
(
11
),
1877
1893
(
2013
).
12.
M.
Liu
,
J.
Xu
,
L.
Shao
,
X.
Shi
,
C.
Li
, and
Z.
Sun
,
Chem. Comm.
60
(
54
),
6860
(
2024
).
13.
A. K.
Nair
,
C. M.
Da Silva
, and
C. H.
Amon
,
Appl. Phys. Lett.
123
(
18
),
183901
(
2023
).
14.
C.
Lohaus
,
A.
Klein
, and
W.
Jaegermann
,
Nat. Commun.
9
(
1
),
4309
(
2018
).
15.
C.
Cheng
,
Z.
Zhou
, and
R.
Long
,
J. Phys. Chem. Lett.
14
(
49
),
10988
10998
(
2023
).
16.
D. L.
Felker
and
P. M. A.
Sherwood
,
Surf. Sci. Spectra
9
(
1
),
106
113
(
2002
).
17.
A.
Roland
,
J.
Fullenwarth
,
J. B.
Ledeuil
,
H.
Martinez
,
N.
Louvain
, and
L.
Monconduit
,
Battery Energy
1
(
1
),
20210009
(
2022
).
You do not currently have access to this content.