This Letter pioneers an investigation into the influence of temperature on threshold voltage (VTH) instability under negative bias in ferroelectric charge trap gate stack (FEG) high electron mobility transistors. Based on the experimental stress condition, i.e., gate bias of −20 V and temperature (T) range from 30 to 150 °C, our findings reveal a unidirectional VTH shift with 30 °C < T < 90 °C, and transitioning to a bidirectional VTH shift at 90 °C ≤ T ≤ 150 °C. The observed VTH < 0 V can be ascribed to the emission of electrons from the trapping layer, prompted by the pre-poling of the ferroelectric (FE) layer and the presence of interface traps. In contrast, under high-temperature stress, where VTH > 0 V, it indicates the depletion of the two-dimensional electron gas electrons due to de-poling and saturation of the polarization in the reverse direction. Moreover, this phenomenon is consistent with extracted activation energies (Ea) of 0.55 ± 0.01 and 0.79 ± 0.01 eV. Additionally, the recovery characteristics validate the trapping/detrapping process.

1.
C. H.
Wu
,
P. C.
Han
,
S. C.
Liu
,
T. E.
Hsieh
,
F. J.
Lumbantoruan
,
Y. H.
Ho
,
J. Y.
Chen
,
K. S.
Yang
,
H. C.
Wang
,
Y. K.
Lin
,
P. C.
Chang
,
Q. H.
Luc
,
Y. C.
Lin
, and
E. Y.
Chang
, “
High-performance normally-OFF GaN MIS-HEMTs using hybrid ferroelectric charge trap gate stack (FEG-HEMT) for power device applications
,”
IEEE Electron Device Lett.
39
(
7
),
991
994
(
2018
).
2.
S. K.
Rathaur
,
J. S.
Wu
,
T. Y.
Yang
,
A.
Amin
,
A.
Dixit
, and
E. Y.
Chang
, “
High-temperature TDDB investigation on high performance-centered hybrid HZO/HfON/Al2O3, ferro-electric charge-trap (FEG) GaN-HEMT
,”
IEEE Trans. Electron Devices
70
(
9
),
4584
4590
(
2023
).
3.
F.
Zeng
,
J. X.
An
,
G.
Zhou
,
W.
Li
,
H.
Wang
,
T.
Duan
,
L.
Jiang
, and
H.
Yu
, “
A comprehensive review of recent progress on GaN high electron mobility transistors: Devices, fabrication and reliability
,”
Electronics
7
(
12
),
377
(
2018
).
4.
S. K.
Rathaur
,
T.
Yang
,
C.
Yang
,
E. Y.
Chang
,
H.
Hsu
, and
A.
Dixit
, “
Time-dependent multiple gate voltage reliability of hybrid ferroelectric charge trap gate stack (FEG) GaN HEMT for power device applications
,” in
IEEE Latin American Electron Devices Conference (LAEDC)
(
IEEE
,
2022
), pp.
7
10
.
5.
J.
Zhu
,
L.
Chen
,
J.
Jiang
,
X.
Lu
,
L.
Yang
,
B.
Hou
,
M.
Liao
,
Y.
Zhou
,
X.
Ma
, and
Y.
Hao
, “
Ferroelectric gate AlGaN/GaN E-mode HEMTs with high transport and sub-threshold performance
,”
IEEE Electron Device Lett.
39
(
1
),
79
82
(
2018
).
6.
L.
Chen
,
H.
Wang
,
B.
Hou
,
M.
Liu
,
L.
Shen
,
X.
Lu
,
X.
Ma
, and
Y.
Hao
, “
Hetero-integration of quasi two-dimensional PbZr0.2Ti0.8O3 on AlGaN/GaN HEMT and non-volatile modulation of two-dimensional electron gas
,”
Appl. Phys. Lett.
115
(
19
),
193505
(
2019
).
7.
H. Y.
Lee
,
C. H.
Lin
,
C. C.
Wei
,
J. C.
Yang
,
E. Y.
Chang
, and
C. T.
Lee
, “
AlGaN/GaN enhancement-mode MOSHEMTs utilizing hybrid gate-recessed structure and ferroelectric charge trapping/storage stacked LiNbO3/HfO2/Al2O3 structure
,”
IEEE Trans. Electron Devices
68
(
8
),
3768
3774
(
2021
).
8.
C. H.
Wu
,
J. Y.
Chen
,
P. C.
Han
,
M. W.
Lee
,
K. S.
Yang
,
H. C.
Wang
,
P. C.
Chang
,
Q. H.
Luc
,
Y. C.
Lin
,
C. F.
Dee
,
A. A.
Hamzah
, and
E. Y.
Chang
, “
Normally-off tri-gate GaN MIS-HEMTs with 0.76 mΩ·cm2 specific on-resistance for power device applications
,”
IEEE Trans. Electron Devices
66
(
8
),
3441
3446
(
2019
).
9.
C. H.
Wu
,
S. C.
Liu
,
C. K.
Huang
,
Y. C.
Chiu
,
P. C.
Han
,
P. C.
Chang
,
F.
Lumbantoruan
,
C. A.
Lin
,
Y. K.
Lin
,
C. Y.
Chang
,
C.
Hu
,
H.
Iwai
, and
E. Y.
Chang
, “
High Vth enhancement mode GaN power devices with high ID, max using hybrid ferroelectric charge trap gate stack
,” in
Symposium on VLSI Technology
(
IEEE
,
2017
).
10.
L.
Chen
,
X.
Ma
,
J.
Zhu
,
B.
Hou
,
F.
Song
,
Q.
Zhu
,
M.
Zhang
,
L.
Yang
, and
Y.
Hao
, “
Polarization engineering in PZT/AlGaN/GaN high-electron-mobility transistors
,”
IEEE Trans. Electron Devices
65
(
8
),
3149
3155
(
2018
).
11.
C.
Wu
,
H.
Ye
,
B.
Grisafe
,
S.
Datta
, and
P.
Fay
, “
Ferroelectric polarization switching behavior of Hf0.5Zr0.5O2 gate dielectrics on gallium nitride high-electron-mobility-transistor heterostructures
,”
Phys. Status Solidi A
217
(
7
),
1900717
(
2020
).
12.
J. S.
Wu
,
P. H.
Liao
,
S. J.
Chang
,
T. Y.
Yang
,
C. Y.
Teng
,
Y. K.
Liang
,
D.
Panda
,
Q. H.
Luc
, and
E. Y.
Chang
, “
Superior breakdown, retention, and TDDB lifetime for ferroelectric engineered charge trap gate E-mode GaN MIS-HEMT
,” in
International Electron Devices Meeting
(
IEEE
,
2022
).
13.
L.
Hao
,
Y.
Li
,
J.
Zhu
,
Z.
Wu
,
J.
Deng
,
H.
Zeng
,
J.
Zhang
,
X.
Liu
, and
W.
Zhang
, “
Enhancing electrical properties of LiNbO3/AlGaN/GaN transistors by using ZnO buffers
,”
J. Appl. Phys.
114
(
2
),
027022
(
2013
).
14.
Y.
Jiang
,
F.
Du
,
K.
Wen
,
Y.
Zhang
,
M.
Li
,
C.
Tang
,
C.
Deng
,
W.
Yu
,
Z.
Wang
,
Q.
Wang
, and
H.
Yu
, “
Threshold voltage modulation on a CTL-based monolithically integrated E/D-mode GaN inverters platform with improved voltage transfer performance
,”
Appl. Phys. Lett.
125
(
3
) (
2024
).
15.
Y.
Jiang
,
F. Z.
Du
,
K. Y.
Wen
,
J. Q.
He
,
P. R.
Wang
,
M. J.
Li
,
C. Y.
Tang
,
Y.
Zhang
,
Z. R.
Wang
,
Q.
Wang
, and
H. Y.
Yu
, “
Charge trapping layer enabled high-performance E-mode GaN HEMTs and monolithic integration GaN inverters
,”
Appl. Phys. Lett.
124
(
24
),
242102
(
2024
).
16.
H. Y.
Lee
,
C. H.
Lin
, and
C. T.
Lee
, “
Fabrication and characterization of AlGaN/GaN enhancement-mode MOSHEMTs with fin-channel array and hybrid gate-recessed structure and LiNbO3 ferroelectric charge trap gate-stack structure
,”
IEEE Trans. Electron Devices
69
(
2
),
500
506
(
2022
).
17.
G.
Li
,
X.
Li
,
J.
Zhao
,
Q.
Zhu
, and
Y.
Chen
, “
Strong interfacial coupling effects of ferroelectric polarization with two-dimensional electron gas in BaTiO3/MgO/AlGaN/GaN/Si heterostructures
,”
J. Mater. Chem. C
7
(
19
),
5677
5685
(
2019
).
18.
R.
Zhou
,
L.
Li
,
W.
Zhao
,
Z.
Liao
,
M. D.
Nguyen
,
M.
Nunnenkamp
,
E. P.
Houwman
,
G.
Koster
,
A. J. H. M.
Rijnders
,
D. J.
Gravesteijn
, and
R. J. E.
Hueting
, “
Polarization effects in ferroelectric gate AlGaN/GaN high electron mobility transistors
,” in
Proceedings of the International Symposium on Power Semiconductor Devices and ICs
,
2020
.
19.
D. K.
Panda
and
T. R.
Lenka
, “
Linearity improvement in E‐mode ferroelectric GaN MOS‐HEMT using dual gate technology
,”
Micro Nano Lett.
14
(
6
),
618
622
(
2019
).
20.
K.
Wang
,
J.
Wan
,
K.
Chen
,
Z.
Tu
,
H.
Wu
, and
C.
Liu
, “
Hf0.5Zr0.5O2-based ferroelectric gate AlGaN/GaN HEMTs with steep subthreshold swings
,”
IEEE Trans. Electron Devices
70
(
11
),
6082
6085
(
2023
).
21.
Z.
Zhao
,
Y.
Dai
,
F.
Meng
,
L.
Chen
,
K.
Liu
,
T.
Luo
,
Z.
Yu
,
Q.
Wang
,
Z.
Yang
,
J.
Zhang
,
W.
Guo
,
L.
Wu
, and
J.
Ye
, “
The incorporation of AlScN ferroelectric gate dielectric in AlGaN/GaN-HEMT with polarization-modulated threshold voltage
,”
Appl. Phys. Express
16
(
3
),
031002
(
2023
).
22.
J. Y.
Yang
,
S. Y.
Oh
,
M. J.
Yeom
,
S.
Kim
,
G.
Lee
,
K.
Lee
,
S.
Kim
, and
G.
Yoo
, “
Pulsed E-/D-mode switchable GaN HEMTs with a ferroelectric AlScN gate dielectric
,”
IEEE Electron Device Lett.
44
(
8
),
1260
1263
(
2023
).
23.
C.
Wu
,
H.
Ye
,
N.
Shaju
,
J.
Smith
,
B.
Grisafe
,
S.
Datta
, and
P.
Fay
, “
Hf0.5Zr0.5O2-based ferroelectric gate HEMTs with large threshold voltage tuning range
,”
IEEE Electron Device Lett.
41
(
3
),
337
340
(
2020
).
24.
J. S.
Wu
,
C. C.
Lee
,
C. H.
Wu
,
C. J.
Huang
,
Y. K.
Liang
,
Y. C.
Weng
, and
E. Y.
Chang
, “
Hf-based and Zr-based charge trapping layer engineering for E-mode GaN MIS-HEMT using ferroelectric charge trap gate stack
,”
IEEE J. Electron Devices Soc.
10
,
525
531
(
2022
).
25.
N.
Zagni
,
M.
Cioni
,
A.
Chini
,
F.
Iucolano
,
F. M.
Puglisi
,
P.
Pavan
, and
G.
Verzellesi
, “
Mechanisms underlying the bidirectional VT shift after negative-bias temperature instability stress in carbon-doped fully recessed AlGaN/GaN MIS-HEMTs
,”
IEEE Trans. Electron Devices
68
(
5
),
2564
2567
(
2021
).
26.
A. G.
Viey
,
F.
Gaillard
,
R.
Modica
,
F.
Iucolano
,
M.
Meneghini
,
E.
Zanoni
,
G.
Meneghesso
,
G.
Ghibaudo
,
W.
Vandendaele
,
M. A.
Jaud
,
J.
Cluzel
,
J. P.
Barnes
,
S.
Martin
,
A.
Krakovinsky
,
R.
Gwoziecki
, and
M.
Plissonnier
, “
Investigation of nBTI degradation on GaN-on-Si E-mode MOSc-HEMT
,” in
International Electron Devices Meeting
(
IEEE
,
2019
).
27.
X.
Liu
,
S.
Zhang
,
K.
Wei
,
Y.
Zhang
,
H.
Yin
,
X.
Chen
,
S.
Huang
,
G.
Liu
,
Y.
Zheng
,
T.
Yuan
,
J.
Niu
, and
X.
Wang
, “
Improved stability of GaN MIS-HEMT with 5-nm plasma-enhanced atomic layer deposition SiN gate dielectric
,”
IEEE Electron Device Lett.
43
(
9
),
1408
1411
(
2022
).
28.
S.
Li
,
Z.
He
,
R.
Gao
,
Y.
Chen
,
Y.
Chen
,
C.
Liu
,
Y.
Huang
, and
G.
Li
, “
Time-dependent threshold voltage instability mechanisms of p-GaN Gate AlGaN/GaN HEMTs under high reverse bias conditions
,”
IEEE Trans. Electron Devices
68
(
1
),
443
446
(
2021
).
29.
G.
Meneghesso
,
M.
Meneghini
,
C.
De Santi
,
M.
Ruzzarin
, and
E.
Zanoni
, “
Positive and negative threshold voltage instabilities in GaN-based transistors
,”
Microelectron. Rel.
80
,
257
265
(
2018
).
30.
A.
Guo
and
J. A.
Del Alamo
, “
Negative-bias temperature instability of GaN MOSFETs
,” in
IEEE International Reliability Physics Symposium Proceedings
(
IEEE
,
2016
).
31.
J. S.
Meena
,
S. M.
Sze
,
U.
Chand
, and
T. Y.
Tseng
, “
Overview of emerging nonvolatile memory technologies
,”
Nanoscale Res. Lett.
9
(
1
),
1
33
(
2014
).
32.
M.
Meneghini
,
I.
Rossetto
,
D.
Bisi
,
M.
Ruzzarin
,
M.
Van Hove
,
S.
Stoffels
,
T. L.
Wu
,
D.
Marcon
,
S.
Decoutere
,
G.
Meneghesso
, and
E.
Zanoni
, “
Negative bias-induced threshold voltage instability in GaN-on-Si power HEMTs
,”
IEEE Electron Device Lett.
37
(
4
),
474
477
(
2016
).
33.
M. A.
Alim
,
A. A.
Rezazadeh
, and
C.
Gaquiere
, “
Temperature effect on DC and equivalent circuit parameters of 0.15-μm gate length GaN/SiC HEMT for microwave applications
,”
IEEE Trans. Microwave Theory Technol.
64
(
11
),
3483
3491
(
2016
).
34.
T.
Ali
,
K.
Kuhnel
,
M.
Czernohorsky
,
C.
Mart
,
M.
Rudolph
,
B.
Patzold
,
D.
Lehninger
,
R.
Olivo
,
M.
Lederer
,
F.
Muller
,
R.
Hoffmann
,
J.
Metzger
,
R.
Binder
,
P.
Steinke
,
T.
Kampfe
,
J.
Muller
,
K.
Seidel
, and
L. M.
Eng
, “
A study on the temperature-dependent operation of fluorite-structure-based ferroelectric HfO2 memory FeFET: Pyroelectricity and reliability
,”
IEEE Trans. Electron Devices
67
(
7
),
2981
2987
(
2020
).
35.
Z.
Wang
,
M. M.
Islam
,
P.
Wang
,
S.
Deng
,
S.
Yu
,
A. I.
Khan
, and
K.
Ni
, “
Depolarization field induced instability of polarization states in HfO2 based ferroelectric FET
,” in
International Electron Devices Meeting
(
IEEE
,
2020
).
36.
X. H.
Ma
,
J. J.
Zhu
,
X. Y.
Liao
,
T.
Yue
,
W. W.
Chen
, and
Y.
Hao
, “
Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by dynamic capacitance dispersion technique
,”
Appl. Phys. Lett.
103
(
3
),
033510
(
2013
).
37.
M.
El-Khatib
,
P.
Ferrandis
,
E.
Morvan
,
G.
Guillot
, and
G.
Bremond
, “
Deep traps localization in AlGaN/GaN MIS-HEMTs by a comparative study using capacitance and current deep level transient spectroscopies
,”
J. Phys.: Conf. Ser.
1190
(
1
),
012013
(
2019
).
38.
Y. C.
Kong
,
F. S.
Xue
,
J. J.
Zhou
,
L.
Li
,
C.
Chen
, and
Y. R.
Li
, “
Ferroelectric polarization-controlled two-dimensional electron gas in ferroelectric/AlGaN/GaN heterostructure
,”
Appl. Phys. A
95
(
3
),
703
706
(
2009
).
39.
H.
Ryu
,
H.
Wu
,
F.
Rao
, and
W.
Zhu
, “
Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing
,”
Sci. Rep.
9
(
1
),
20383
(
2019
).
You do not currently have access to this content.