The formation of distinct intermittent large-amplitude dynamics has been investigated in three magnetically coupled Superconducting QUantum Interference Devices (SQUIDs). The proposed model manifests abrupt large-amplitude events from a bounded region at sporadic time intervals. The unforeseen deviation occurs from either regular or chaotic motion via different dynamical processes of interior crisis-induced intermittency, Pomeau–Manneville intermittency, and quasiperiodic intermittency. The advent of extremely large-amplitude dynamics and their transition are evaluated, using appropriate dynamical and statistical analyses. Our observation enlightened the possibility of utilizing the SQUIDs more efficiently and harmlessly in distinct applications while taking note of the emergence of atypical behavior in the system.

1.
J. V.
Yakhmi
,
Superconducting Materials and Their Applications: An Interdisciplinary Approach
(
IOP Publishing
,
2021
).
2.
P.
Weiss
,
M.
Knufinke
,
S.
Bernon
,
D.
Bothner
,
L.
Sárkány
,
C.
Zimmermann
,
R.
Kleiner
,
D.
Koelle
,
J.
Fortágh
, and
H.
Hattermann
, “
Sensitivity of ultracold atoms to quantized flux in a superconducting ring
,”
Phys. Rev. Lett.
114
,
113003
(
2015
).
3.
D. N.
Pham
,
W.
Fan
,
M. G.
Scheer
, and
H. E.
Türeci
, “
Flux-based three-dimensional electrodynamic modeling approach to superconducting circuits and materials
,”
Phys. Rev. A
107
,
053704
(
2023
).
4.
K. C.
Zevenhoven
,
A. J.
Mäkinen
, and
R. J.
Ilmoniemi
, “
Superconducting receiver arrays for magnetic resonance imaging
,”
Biomed. Phys. Eng. Express
6
,
015016
(
2020
).
5.
M.
Paulsen
,
J.
Lindner
,
B.
Klemke
,
J.
Beyer
,
M.
Fechner
,
D.
Meier
, and
K.
Kiefer
, “
An ultra-low field SQUID magnetometer for measuring antiferromagnetic and weakly remanent magnetic materials at low temperatures
,”
Rev. Sci. Instrum.
94
,
103904
(
2023
).
6.
J. J. G.
Ripoll
,
Quantum Information and Quantum Optics with Superconducting Circuits
(
Cambridge University Press
,
2022
).
7.
C.
Gough
, “
Flux quantization
,” in
Handbook of Superconductivity
(
CRC Press
,
2022
), pp.
69
76
.
8.
J.
Clarke
and
A. I.
Braginski
,
The SQUID Handbook: Applications of SQUIDs and SQUID Systems
(
John Wiley & Sons
,
2006
).
9.
M. I.
Faley
,
E.
Kostyurina
,
K.
Kalashnikov
,
Y. V.
Maslennikov
,
V. P.
Koshelets
, and
R. E.
Dunin-Borkowski
, “
Superconducting quantum interferometers for nondestructive evaluation
,”
Sensors
17
,
2798
(
2017
).
10.
K.
Sternickel
and
A. I.
Braginski
, “
Biomagnetism using SQUIDs: Status and perspectives
,”
Supercond. Sci. Technol.
19
,
S160
(
2006
).
11.
A. A.
Clerk
,
M. H.
Devoret
,
S. M.
Girvin
,
F.
Marquardt
, and
R. J.
Schoelkopf
, “
Introduction to quantum noise, measurement, and amplification
,”
Rev. Mod. Phys.
82
,
1155
(
2010
).
12.
W.
Wernsdorfer
, “
From micro-to nano-SQUIDs: Applications to nanomagnetism
,”
Supercond. Sci. Technol.
22
,
064013
(
2009
).
13.
L. S.
Rey
,
D. C.
Ohnmacht
,
C. B.
Winkelmann
,
J.
Siewert
,
W.
Belzig
, and
E.
Scheer
, “
Interplay of Andreev reflection and coulomb blockade in hybrid superconducting single-electron transistors
,”
Phys. Rev. Lett.
132
,
057001
(
2024
).
14.
R. L.
Fagaly
, “
Superconducting quantum interference device instruments and applications
,”
Rev. Sci. Instrum.
77
,
101101
(
2006
).
15.
M. M.
Saari
,
Y.
Ishihara
,
Y.
Tsukamoto
,
T.
Kusaka
,
K.
Morita
,
K.
Sakai
,
T.
Kiwa
, and
K.
Tsukada
, “Optimization of an AC/DC high-Tc SQUID magnetometer detection unit for evaluation of magnetic nanoparticles in solution,”
IEEE Trans. Appl. Supercond.
25
,
1601404
(
2015
).
16.
N.
Oukhanski
,
V.
Schultze
,
R.
IJsselsteijn
, and
H.-G.
Meyer
, “
High frequency ac bias for direct-coupled dc superconducting quantum interference device readout electronics
,”
Rev. Sci. Instrum.
74
,
5189
5193
(
2003
).
17.
C.
Ryu
,
P.
Blackburn
,
A.
Blinova
, and
M.
Boshier
, “
Experimental realization of Josephson junctions for an atom SQUID
,”
Phys. Rev. Lett.
111
,
205301
(
2013
).
18.
G.
De Simoni
,
L.
Cassola
,
N.
Ligato
,
G. C.
Tettamanzi
, and
F.
Giazotto
, “
Ultrahigh linearity of the magnetic-flux-to-voltage response of proximity-based mesoscopic bi-SQUIDs
,”
Phys. Rev. Appl.
18
,
014073
(
2022
).
19.
W.
Myers
,
D.
Slichter
,
M.
Hatridge
,
S.
Busch
,
M.
Mößle
,
R.
McDermott
,
A.
Trabesinger
, and
J.
Clarke
, “
Calculated signal-to-noise ratio of MRI detected with SQUIDs and faraday detectors in fields from 10 μT to 1.5 T
,”
J. Magn. Reson.
186
,
182
192
(
2007
).
20.
V.
Kornev
,
A.
Sharafiev
,
I.
Soloviev
, and
O.
Mukhanov
, “
Signal and noise characteristics of bi-SQUID
,”
Supercond. Sci. Technol.
27
,
115009
(
2014
).
21.
R.
Vijay
,
J.
Sau
,
M. L.
Cohen
, and
I.
Siddiqi
, “
Optimizing anharmonicity in nanoscale weak link Josephson junction oscillators
,”
Phys. Rev. Lett.
103
,
087003
(
2009
).
22.
R.
Vijay
,
E. M.
Levenson-Falk
,
D. H.
Slichter
, and
I.
Siddiqi
, “
Approaching ideal weak link behavior with three dimensional aluminum nanobridges
,”
Appl. Phys. Lett.
96
(
22
),
223112
(
2010
).
23.
N.
Lazarides
and
G.
Tsironis
, “
Superconducting metamaterials
,”
Phys. Rep.
752
,
1
67
(
2018
).
24.
J.
Hizanidis
,
N.
Lazarides
, and
G.
Tsironis
, “
Flux bias-controlled chaos and extreme multistability in SQUID oscillators
,”
Chaos
28
(
6
),
063117
(
2018
).
25.
B.
Vleeming
,
M.
Andriesse
,
A. M.
van den Brink
,
H.
Dekker
, and
R.
de Bruyn Ouboter
, “
Periodic oscillations of the critical temperature versus the applied magnetic flux in a four-terminal SQUID
,”
Physica B
239
,
216
222
(
1997
).
26.
E.
Segev
,
O.
Suchoi
,
O.
Shtempluck
,
F.
Xue
, and
E.
Buks
, “
Hysteresis and intermittency in direct-current superconducting quantum interference device with nanobridges fabricated on a thin membrane
,”
Appl. Phys. Lett.
98
(
5
),
052504
(
2011
).
27.
J.
Shena
,
N.
Lazarides
, and
J.
Hizanidis
, “
Multi-branched resonances, chaos through quasiperiodicity, and asymmetric states in a superconducting dimer
,”
Chaos
30
(
12
),
123127
(
2020
).
28.
J.
Shena
,
N.
Lazarides
, and
J.
Hizanidis
, “
Synchronization transitions in a hyperchaotic SQUID trimer
,”
Chaos
31
(
9
),
093102
(
2021
).
29.
N.
Lazarides
,
G.
Neofotistos
, and
G.
Tsironis
, “
Chimeras in SQUID metamaterials
,”
Phys. Rev. B
91
,
054303
(
2015
).
30.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature
450
,
1054
1057
(
2007
).
31.
F.
Selmi
,
S.
Coulibaly
,
Z.
Loghmari
,
I.
Sagnes
,
G.
Beaudoin
,
M. G.
Clerc
, and
S.
Barbay
, “
Spatiotemporal chaos induces extreme events in an extended microcavity laser
,”
Phys. Rev. Lett.
116
,
013901
(
2016
).
32.
C.
Bonatto
and
A.
Endler
, “
Extreme and superextreme events in a loss-modulated CO2 laser: Nonlinear resonance route and precursors
,”
Phys. Rev. E
96
,
012216
(
2017
).
33.
S. L.
Kingston
,
S.
Kumarasamy
,
M.
Balcerzak
, and
T.
Kapitaniak
, “
Different routes to large-intensity pulses in Zeeman laser model
,”
Opt. Express
31
,
22817
22836
(
2023
).
34.
S.
Kumarasamy
and
A. N.
Pisarchik
, “
Extreme events in systems with discontinuous boundaries
,”
Phys. Rev. E
98
,
032203
(
2018
).
35.
A.
Ray
,
A.
Mishra
,
D.
Ghosh
,
T.
Kapitaniak
,
S. K.
Dana
, and
C.
Hens
, “
Extreme events in a network of heterogeneous Josephson junctions
,”
Phys. Rev. E
101
,
032209
(
2020
).
36.
S.
Leo Kingston
,
G.
Kumaran
,
A.
Ghosh
,
S.
Kumarasamy
, and
T.
Kapitaniak
, “
Impact of time varying interaction: Formation and annihilation of extreme events in dynamical systems
,”
Chaos
33
(
12
),
123134
(
2023
).
37.
M.
Farazmand
and
T. P.
Sapsis
, “
Extreme events: Mechanisms and prediction
,”
Appl. Mech. Rev.
71
,
050801
(
2019
).
38.
S.
Albeverio
,
V.
Jentsch
, and
H.
Kantz
,
Extreme Events in Nature and Society
(
Springer Science & Business Media
,
2006
).
39.
S. L.
Kingston
,
A.
Mishra
,
M.
Balcerzak
,
T.
Kapitaniak
, and
S. K.
Dana
, “
Instabilities in quasiperiodic motion lead to intermittent large-intensity events in Zeeman laser
,”
Phys. Rev. E
104
,
034215
(
2021
).
40.
A.
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
, “
Routes to extreme events in dynamical systems: Dynamical and statistical characteristics
,”
Chaos
30
(
6
),
063114
(
2020
).
41.
S.
Leo Kingston
,
T.
Kapitaniak
, and
S. K.
Dana
, “
Transition to hyperchaos: Sudden expansion of attractor and intermittent large-amplitude events in dynamical systems
,”
Chaos
32
(
8
),
081106
(
2022
).
42.
S.
Leo Kingston
,
M.
Balcerzak
,
S. K.
Dana
, and
T.
Kapitaniak
, “
Transition to hyperchaos and rare large-intensity pulses in Zeeman laser
,”
Chaos
33
(
2
),
023128
(
2023
).
43.
J. H.
Argyris
,
G.
Faust
,
M.
Haase
, and
R.
Friedrich
,
An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged Second Edition
(
Springer
,
2015
).
You do not currently have access to this content.