Spin pumping has significant implications for spintronics, providing a mechanism to manipulate and transport spins for information processing. Understanding and harnessing spin currents through spin pumping is critical for the development of efficient spintronic devices. The use of a magnetic insulator with low damping enhances the signal-to-noise ratio in crucial experiments such as spin-torque ferromagnetic resonance (FMR) and spin pumping. A magnetic insulator coupled with a heavy metal or quantum material offers a more straightforward model system, especially when investigating spin-charge interconversion processes to greater accuracy. This simplicity arises from the absence of unwanted effects caused by conduction electrons unlike in ferromagnetic metals. Here, we investigate the spin pumping in coupled ferrimagnetic (FiM) Y3Fe5O12 (YIG)/Tm3Fe5O12 (TmIG) bilayers combined with heavy-metal (Pt) using the inverse spin Hall effect. It is observed that magnon transmission occurs at both of the FiMs FMR positions. The enhancement of spin pumping voltage (Vsp) in the FiM garnet heterostructures is observed. The plausible reason might be the interfacial exchange coupling between FiMs. The modulation of Vsp is achieved by tuning the bilayer structure. Further, the spin mixing conductance for these coupled systems is found to be 10 18 m−2. Our findings describe a coupled FiM system for the investigation of magnon coupling providing opportunities for magnonic devices.

1.
S. D.
Bader
and
S.
Parkin
,
Annu. Rev. Condens. Matter Phys.
1
,
71
(
2010
).
2.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
3.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Phys.
11
,
453
(
2015
).
4.
B. B.
Singh
,
K.
Roy
,
P.
Gupta
,
T.
Seki
,
K.
Takanashi
, and
S.
Bedanta
,
npg Asia Mater.
13
,
9
(
2021
).
5.
P.
Gupta
,
B. B.
Singh
,
K.
Roy
,
A.
Sarkar
,
M.
Waschk
,
T.
Brueckel
, and
S.
Bedanta
,
Nanoscale
13
,
2714
(
2021
).
6.
V.
Thiruvengadam
,
A.
Mishra
,
S.
Mohanty
, and
S.
Bedanta
,
ACS Appl. Nano Mater.
5
,
10645
(
2022
).
7.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
,
A. O.
Adeyeye
,
M.
Krawczyk
,
J.
Gräfe
,
C.
Adelmann
,
S.
Cotofana
,
A.
Naeemi
,
V. I.
Vasyuchka
et al,
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
8.
V.
Kruglyak
,
S.
Demokritov
, and
D.
Grundler
,
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
9.
P.
Pirro
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Rev. Mater.
6
,
1114
(
2021
).
10.
M.
Costache
,
M.
Sladkov
,
S.
Watts
,
C.
Van Der Wal
, and
B.
Van Wees
,
Phys. Rev. Lett.
97
,
216603
(
2006
).
11.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
,
Appl. Phys. Lett.
88
(
18
),
182509
(
2006
).
12.
C. W.
Sandweg
,
Y.
Kajiwara
,
A. V.
Chumak
,
A. A.
Serga
,
V. I.
Vasyuchka
,
M. B.
Jungfleisch
,
E.
Saitoh
, and
B.
Hillebrands
,
Phys. Rev. Lett.
106
,
216601
(
2011
).
13.
H.
Kurebayashi
,
O.
Dzyapko
,
V.
Demidov
,
D.
Fang
,
A.
Ferguson
, and
S.
Demokritov
,
Appl. Phys. Lett.
99
(
16
),
162502
(
2011
).
14.
T.
Tashiro
,
R.
Takahashi
,
Y.
Kajiwara
,
K.
Ando
,
H.
Nakayama
,
T.
Yoshino
,
D.
Kikuchi
, and
E.
Saitoh
,
Proc. SPIE
8461
,
7
15
(
2012
).
15.
M.
Jungfleisch
,
A.
Chumak
,
V.
Vasyuchka
,
A.
Serga
,
B.
Obry
,
H.
Schultheiss
,
P.
Beck
,
A.
Karenowska
,
E.
Saitoh
, and
B.
Hillebrands
,
Appl. Phys. Lett.
99
(
18
),
182512
(
2011
).
16.
J.
Mee
and
J.
Archer
,
Appl. Phys. Lett.
10
,
289
(
1967
).
17.
K.
Roy
,
S.
Nayak
,
P.
Gupta
, and
S.
Bedanta
,
Phys. Chem. Chem. Phys.
24
,
24323
(
2022
).
18.
A.
Mishra
,
P.
Gupta
,
V.
Thiruvengadam
,
B. B.
Singh
, and
S.
Bedanta
,
J. Alloys Compd.
970
,
172076
(
2024
).
19.
A.
Chumak
,
A.
Serga
,
M.
Jungfleisch
,
R.
Neb
,
D.
Bozhko
,
V.
Tiberkevich
, and
B.
Hillebrands
,
Appl. Phys. Lett.
100
,
082405
(
2012
).
20.
J.-P.
Castera
,
J. Appl. Phys.
55
,
2506
(
1984
).
21.
M.
Wu
and
A.
Hoffmann
, “
Recent Advances in Magnetic Insulators-From Spintronics to Microwave Applications
” (
Academic Press
,
2013
), Vol.
64
, ISBN: 9780124080713.
22.
C.
Hauser
,
T.
Richter
,
N.
Homonnay
,
C.
Eisenschmidt
,
M.
Qaid
,
H.
Deniz
,
D.
Hesse
,
M.
Sawicki
,
S. G.
Ebbinghaus
, and
G.
Schmidt
,
Sci. Rep.
6
,
20827
(
2016
).
23.
24.
Z.
Wang
,
Y.
Sun
,
M.
Wu
,
V.
Tiberkevich
, and
A.
Slavin
,
Phys. Rev. Lett.
107
,
146602
(
2011
).
25.
E.
Padrón-Hernández
,
A.
Azevedo
, and
S.
Rezende
,
Appl. Phys. Lett.
99
(
19
),
192511
(
2011
).
26.
M.
Haertinger
,
C. H.
Back
,
J.
Lotze
,
M.
Weiler
,
S.
Geprägs
,
H.
Huebl
,
S. T.
Gönnenwein
, and
G.
Woltersdorf
,
Phys. Rev. B
92
,
054437
(
2015
).
27.
G. L. S.
Vilela
,
J. E.
Abrao
,
E.
Santos
,
Y.
Yao
,
J. B. S.
Mendes
,
R. L.
Rodríguez-Suárez
,
S. M.
Rezende
,
W.
Han
,
A.
Azevedo
, and
J. S.
Moodera
,
Appl. Phys. Lett.
117
(
12
),
122412
(
2020
).
28.
Y.-T.
Chen
,
S.
Takahashi
,
H.
Nakayama
,
M.
Althammer
,
S. T.
Goennenwein
,
E.
Saitoh
, and
G. E.
Bauer
,
J. Phys.: Condens. Matter
28
,
103004
(
2016
).
29.
K. I.
Uchida
,
H.
Adachi
,
T.
Ota
,
H.
Nakayama
,
S.
Maekawa
, and
E.
Saitoh
,
Appl. Phys. Lett.
97
(
17
),
172505
(
2010
).
30.
A.
Baker
,
A.
Figueroa
,
D.
Pingstone
,
V.
Lazarov
,
G.
Van Der Laan
, and
T.
Hesjedal
,
Sci. Rep.
6
,
35582
(
2016
).
31.
A.
Timopheev
,
Y. G.
Pogorelov
,
S.
Cardoso
,
P.
Freitas
,
G.
Kakazei
, and
N.
Sobolev
,
Phys. Rev. B
89
,
144410
(
2014
).
32.
B. B.
Singh
and
S.
Bedanta
,
Phys. Rev. Appl.
13
,
044020
(
2020
).
33.
M.
Gilleo
and
S.
Geller
,
Phys. Rev.
110
,
73
(
1958
).
34.
G.
Vilela
,
H.
Chi
,
G.
Stephen
,
C.
Settens
,
P.
Zhou
,
Y.
Ou
,
D.
Suri
,
D.
Heiman
, and
J. S.
Moodera
,
J. Appl. Phys.
127
,
115302
(
2020
).
35.
Y.
Li
,
W.
Cao
,
V. P.
Amin
,
Z.
Zhang
,
J.
Gibbons
,
J.
Sklenar
,
J.
Pearson
,
P. M.
Haney
,
M. D.
Stiles
,
W. E.
Bailey
et al,
Phys. Rev. Lett.
124
,
117202
(
2020
).
36.
N.
Kumar
,
D.
Misra
,
N.
Venkataramani
,
S.
Prasad
, and
R.
Krishnan
,
J. Magn. Magn. Mater.
272-276
,
E899
(
2004
).
37.
S.
Crossley
,
A.
Quindeau
,
A.
Swartz
,
E.
Rosenberg
,
L.
Beran
,
C.
Avci
,
Y.
Hikita
,
C.
Ross
, and
H.
Hwang
,
Appl. Phys. Lett.
115
,
172402
(
2019
).
38.
H.
Kurebayashi
,
O.
Dzyapko
,
V. E.
Demidov
,
D.
Fang
,
A. J.
Ferguson
, and
S. O.
Demokritov
,
Nat. Mater.
10
,
660
(
2011
).
39.
R.
Iguchi
and
E.
Saitoh
,
J. Phys. Soc. Jpn.
86
,
011003
(
2017
).
40.
A.
Conca
,
B.
Heinz
,
M.
Schweizer
,
S.
Keller
,
E. T.
Papaioannou
, and
B.
Hillebrands
,
Phys. Rev. B
95
,
174426
(
2017
).
41.
H.
Qin
,
S. J.
Hämäläinen
, and
S.
Van Dijken
,
Sci. Rep.
8
,
5755
(
2018
).
42.
S.
Klingler
,
V.
Amin
,
S.
Geprägs
,
K.
Ganzhorn
,
H.
Maier-Flaig
,
M.
Althammer
,
H.
Huebl
,
R.
Gross
,
R. D.
McMichael
,
M. D.
Stiles
et al,
Phys. Rev. Lett.
120
,
127201
(
2018
).
43.
J.
Liu
,
Y.
Xiong
,
J.
Liang
,
X.
Wu
,
C.
Liu
,
S. K.
Cheung
,
Z.
Ren
,
R.
Liu
,
A.
Christy
,
Z.
Chen
et al, arXiv:2309.03116 (
2023
).
44.
M. M.
Subedi
,
K.
Deng
,
Y.
Xiong
,
J.
Mongeon
,
M. T.
Hossain
,
P.
Meisenheimer
,
E.
Zhou
,
J.
Heron
,
M. B.
Jungfleisch
,
W.
Zhang
et al, arXiv:2301.07311 (
2023
).
45.
Y.
Li
,
Z.
Zhang
,
C.
Liu
,
D.
Zheng
,
B.
Fang
,
C.
Zhang
,
A.
Chen
,
Y.
Ma
,
C.
Wang
,
H.
Liu
et al,
Nat. Commun.
15
,
2234
(
2024
).
You do not currently have access to this content.