Spin-transfer torque magnetic random access memory (MRAM) devices have considerable potential for high-performance computing applications; however, progress in this field has been hindered by difficulties in etching the magnetic tunnel junction (MTJ). One notable issue is electrical shorting caused by the accumulation of etching by-products on MTJ surfaces. Attempts to resolve these issues led to the development of step-MTJs, in which etching does not proceed beyond the MgO barrier; however, the resulting devices suffer from poor scalability and unpredictable shunting paths due to asymmetric electrode structures. This paper outlines the fabrication of pillar-shaped MTJs via a four-step etching process involving reactive-ion etching, ion-beam etching, oxygen exposure, and ion-trimming. The respective steps can be cross-tuned to optimize the shape of the pillars, prevent sidewall redeposition, and remove undesired shunting paths in order to enhance MTJ performance. In experiments, the proposed pillar-MTJs outperformed step-MTJs in key metrics, including tunneling magnetoresistance, coercivity, and switching efficiency. The proposed pillar-MTJs also enable the fabrication of MRAM cells with smaller cell sizes than spin–orbit torque devices and require no external field differing from voltage-controlled magnetic anisotropy devices.

1.
S.
Ikeda
,
K.
Miura
,
H.
Yamamoto
,
K.
Mizunuma
,
H. D.
Gan
,
M.
Endo
,
S.
Kanai
,
J.
Hayakawa
,
F.
Matsukura
, and
H.
Ohno
,
Nat. Mater.
9
(
9
),
721
724
(
2010
).
2.
K.
Watanabe
,
B.
Jinnai
,
S.
Fukami
,
H.
Sato
, and
H.
Ohno
,
Nat. Commun.
9
,
663
(
2018
).
3.
D.
Apalkov
,
A.
Khvalkovskiy
,
S.
Watts
,
V.
Nikitin
,
X.
Tang
,
D.
Lottis
,
K.
Moon
,
X.
Luo
,
E.
Chen
,
A.
Ong
,
A.
Driskill-Smith
, and
M.
Krounbi
,
J. Emerg. Technol. Comput. Syst.
9
(
2
),
13
(
2013
).
4.
K. L.
Wang
,
J. G.
Alzate
, and
P. K.
Amiri
,
J. Phys. D: Appl. Phys.
46
(
7
),
074003
(
2013
).
5.
Y. J.
Song
,
J. H.
Lee
,
H. C.
Shin
,
K. H.
Lee
,
K.
Suh
,
J. R.
Kang
,
S. S.
Pyo
,
H. T.
Jung
,
S. H.
Hwang
,
G. H.
Koh
,
S. C.
Oh
,
S. O.
Park
,
J. K.
Kim
,
J. C.
Park
,
J.
Kim
,
K. H.
Hwang
,
G. T.
Jeong
,
K. P.
Lee
, and
E. S.
Jung
, in
IEEE International Electron Device Meeting
(
IEDM
,
2016
), p.
27.2.1
.
6.
W. J.
Gallagher
,
E.
Chien
,
T. W.
Chiang
,
J. C.
Huang
,
M. C.
Shih
,
C. Y.
Wang
,
C. H.
Weng
,
S.
Chen
,
C.
Bair
,
G.
Lee
,
Y. C.
Shih
,
C. F.
Lee
,
P. H.
Lee
,
R.
Wang
,
K. H.
Shen
,
J. J.
Wu
,
W.
Wang
, and
H.
Chuang
, in
IEEE International Electron Devices Meeting
(
IEDM
,
2019
), p.
2.7.1
.
7.
D.
Efnusheva
,
A.
Cholakoska
, and
A.
Tentov
,
Int. J. Comput. Sci. Inf. Technol.
9
(2),
151
163
(
2017
).
8.
A.
Sebastian
,
M. L.
Gallo
,
R. K.
Aljameh
, and
E.
Eleftheriou
,
Nat. Nanotechnol.
15
,
529
(
2020
).
9.
S.
Jung
,
H.
Lee
,
S.
Myung
,
H.
Kim
,
S. K.
Yeon
,
S. W.
Kwon
,
Y.
Ju
,
M.
Kim
,
W.
Yi
,
S.
Han
,
B.
Kwon
,
B.
Seo
,
K.
Lee
,
G. H.
Koh
,
K.
Lee
,
Y.
Song
,
C.
Choi
,
D.
Ham
, and
S. J.
Kim
,
Nature
601
,
211
216
(
2022
).
10.
M. Y.
Song
,
K. L.
Chen
,
K. M.
Chen
,
K. T.
Chang
,
I. J.
Wang
,
Y. C.
Hsin
,
C. Y.
Lin
,
E.
Ambrosi
,
W.
Khwa
,
Y. L.
Lu
,
C. Y.
Hu
,
S. Y.
Yang
,
S. H.
Li
,
J. H.
Wei
,
T. Y.
Lee
,
Y. J.
Wang
,
M. F.
Chang
,
C. F.
Pai
, and
X. Y.
Bao
, in
IEEE International Electron Devices Meeting
(
IEDM
,
2023
).
11.
M.
Gajek
,
J. J.
Nowak
,
J. Z.
Sun
,
P. L.
Trouilloud
,
E. J.
O'Sullivan
,
D. W.
Abraham
,
M. C.
Gaidis
,
G.
Hu
,
S.
Brown
,
Y.
Zhu
,
R. P.
Robertazzi
,
W. J.
Gallagher
, and
D. C.
Worledge
,
Appl. Phys. Lett.
100
(
13
),
132408
(
2012
).
12.
J. Y.
Park
,
S. K.
Kang
,
M. H.
Jeon
,
M. S.
Jhon
, and
G. Y.
Yeom
,
J. Electrochem.
158
,
1
(
2010
).
13.
E. H.
Kim
,
T. Y.
Lee
, and
C. W.
Chung
,
J. Electrochem. Soc.
159
(
3
),
H230
(
2012
).
14.
K.
Kinoshita
,
H.
Utsumi
,
K.
Suemitsu
,
H.
Hada
, and
T.
Sugibayashi
,
Jpn. J. Appl. Phys., Part 1
49
(
8
),
08JB02
(
2010
).
15.
K.
Sugiura
,
S.
Yakahashi
,
M.
Amano
,
T.
Kajiyama
,
M.
Iwayama
,
Y.
Asao
,
N.
Shimomura
,
T.
Kishi
,
S.
Ikegawa
,
H.
Yoda
, and
A.
Nitayama
,
Jpn. J. Appl. Phys.
48
(
8
),
08HD02
(
2009
).
16.
J. H.
Jeong
and
T.
Endoh
,
J. Appl. Phys
117
(
17
),
17D906
(
2015
).
17.
S.
Rao
,
W.
Kim
,
S. V.
Beek
,
S.
Kundu
,
M.
Perumkunnil
,
S.
Cosemans
,
F.
Yasin
,
S.
Couet
,
R.
Carpenter
,
B. J.
O'Sullivan
,
S. H.
Sharifi
,
N.
Jossart
,
L.
Souriau
,
L.
Goux
,
D.
Crotti
, and
G. S.
Kar
, in
IEEE International Memory Workshop
(
IMW
,
2021
).
18.
L.
Thomas
,
G.
Jan
, and
J.
Zhu
,
J. Appl. Phys
115
(
17
),
172615
(
2014
).
19.
A. A.
Timopheev
,
R.
Sousa
,
M.
Chshiev
,
L. D.
Buda-Prejbeanu
, and
B.
Dieny
,
Phys. Rev. B
92
(
10
),
104430
(
2015
).
21.
H.
Honjo
,
T. V. A.
Nguyen
,
T.
Watanabe
,
T.
Nasuno
,
C.
Zhang
,
T.
Tanigawa
,
S.
Miura
,
H.
Inoue
,
M.
Niwa
,
T.
Yoshiduka
,
Y.
Noguchi
,
M.
Yashuhira
,
A.
Tamakoshi
,
M.
Natsui
,
Y.
Ma
,
H.
Koike
,
Y.
Takahashi
,
K.
Furuya
,
H.
Shen
,
S.
Fukami
,
H.
Sato
,
S.
Ikeda
,
T.
Hanyu
,
H.
Ohno
, and
T.
Endoh
, in
IEEE International Electron Device Meeting
(
IEEE
,
2019
), p.
28.5.1
.
22.
H.
Suhali
,
H.
He
,
J.
Yang
,
Q.
Shu
,
C. Y.
Wang
,
S. Y.
Yang
,
Y. C.
Hsin
,
C. Y.
Shih
,
H. H.
Lee
,
D.
Wu
,
A.
Lee
,
J. H.
Wei
,
P.
Gupta
,
K. L.
Wang
, and
S.
Pamarti
, in
IEEE International Electron Device Meeting
(
IEEE
,
2023
), p.
1
.
23.
Y. C.
Wu
,
W.
Kim
,
K.
Garello
,
F.
Yasin
,
G.
Jayakumar
,
S.
Couet
,
R.
Carpenter
,
S.
Kundu
,
S.
Rao
,
D.
Crotti
,
J.
Van Houdt
,
G.
Groeseneken
, and
G. S.
Kar
, in
IEEE Symposium on VLSI Technology
(
IEEE
,
2020
), p.
1
.
24.
K.
Nishioka
,
S.
Miura
,
H.
Honjo
,
H.
Inoue
,
T.
Watanabe
,
T.
Nasuno
,
H.
Naganuma
,
T. V. A.
Nguyen
,
Y.
Noguchi
,
M.
Yasguhira
,
S.
Ikeda
, and
T.
Endoh
,
IEEE Trans. Magn.
68
(6),
6
(
2021
).
You do not currently have access to this content.