Electron–phonon coupling thermal resistance in metals is a key factor affecting the thermal boundary conductance (TBC) of metal–metal–dielectric systems. However, quantitatively differentiating the contribution of electron–phonon coupling to TBC is still a challenge, as various thermal resistances are coupled in a complicated manner at the metal–metal–dielectric interface. Herein, we propose a two-step strategy to study electron–phonon coupling. We first decouple the phonon–phonon thermal conductance (TBCp-p) between metallic interlayer and dielectric from the metal–metal–dielectric interface by experimentally characterizing the TBCp-p of a single metallic interlayer deposited dielectric with the transient thermoreflectance technique; Combining metal–metal–dielectric TBC measurement and a thermal circuit model with measured TBCp-p as input, the contribution of electron–phonon coupling to TBC of the metal–metal–dielectric system is differentiated quantitatively. For the Au–Ni–GaN system, the contribution of electron–phonon coupling thermal resistance in the Ni interlayer ( R e p h , Ni) is substantially higher at lower Ni interlayer thickness, reaching 35% at ∼1 nm Ni. The electron–phonon coupling constant of Ni (gNi) was fitted in the range of 6.4 × 1016–36 × 1016 W/m3K. The above results were also verified in the Au–Ni–SiC system. This study will promote a deeper understanding of the thermal transport in the metal–metal–dielectric system and provide an insightful indication for the manipulation of TBC in this system.

1.
D.-Y.
Chen
,
A. R.
Persson
,
V.
Darakchieva
,
P. O. Å.
Persson
,
J.-T.
Chen
, and
N.
Rorsman
, “
Structural investigation of ultra-low resistance deeply recessed sidewall ohmic contacts for AlGaN/GaN HEMTs based on Ti/Al/Ti-metallization
,”
Semicond. Sci. Technol.
38
(
10
),
105006
(
2023
).
2.
Y.
Yao
,
R. F.
Davis
, and
L. M.
Porter
, “
Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties
,”
J. Electron. Mater.
46
(
4
),
2053
2060
(
2017
).
3.
M.
Wzorek
,
M.
Ekielski
,
J.
Tarenko
,
M. A.
Borysiewicz
,
E.
Brzozowski
, and
A.
Taube
, “
Thermal stability of Cu/Pd2Si/, Cu/, and Au/Ni/Schottky contacts to AlGaN/GaN heterostructures
,”
IEEE Trans. Electron Devices
71
(
1
),
490
495
(
2024
).
4.
Y.
Yao
,
R.
Gangireddy
,
J.
Kim
,
K. K.
Das
,
R. F.
Davis
, and
L. M.
Porter
, “
Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals
,”
J. Vac. Sci. Technol., B
35
(
3
),
03D113
(
2017
).
5.
Y.
Mao
,
B.
Meng
,
Z.
Qin
,
B.
Gao
, and
C.
Yuan
, “
Device-level thermal analysis for gallium oxide lateral field-effect transistor
,”
IEEE Trans. Electron Devices
70
(
3
),
953
958
(
2023
).
6.
H. T.
Aller
,
X.
Yu
,
A.
Wise
,
R. S.
Howell
,
A. J.
Gellman
,
A. J. H.
McGaughey
, and
J. A.
Malen
, “
Chemical reactions impede thermal transport across metal/β-Ga2O3 interfaces
,”
Nano Lett.
19
(
12
),
8533
8538
(
2019
).
7.
J.
Shi
,
C.
Yuan
,
H.-L.
Huang
,
J.
Johnson
,
C.
Chae
,
S.
Wang
,
R.
Hanus
,
S.
Kim
,
Z.
Cheng
,
J.
Hwang
, and
S.
Graham
, “
Thermal transport across metal/β-Ga2O3 interfaces
,”
ACS Appl. Mater. Interfaces
13
(
24
),
29083
29091
(
2021
).
8.
C.
Yuan
,
Y.
Zhang
,
R.
Montgomery
,
S.
Kim
,
J.
Shi
,
A.
Mauze
,
T.
Itoh
,
J. S.
Speck
, and
S.
Graham
, “
Modeling and analysis for thermal management in gallium oxide field-effect transistors
,”
J. Appl. Phys.
127
(
15
),
154502
(
2020
).
9.
S. H.
Kim
,
D.
Shoemaker
,
B.
Chatterjee
,
A. J.
Green
,
K. D.
Chabak
,
E. R.
Heller
,
K. J.
Liddy
,
G. H.
Jessen
,
S.
Graham
, and
S.
Choi
, “
Thermally-aware layout design of β-Ga2O3 lateral MOSFETs
,”
IEEE Trans. Electron Devices
69
(
3
),
1251
1257
(
2022
).
10.
Y.
Wang
,
Z.
Lu
,
A. K.
Roy
, and
X.
Ruan
, “
Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electron-phonon coupling perspective
,”
J. Appl. Phys.
119
(
6
),
065103
(
2016
).
11.
X.
Li
,
W.
Park
,
Y.
Wang
,
Y. P.
Chen
, and
X.
Ruan
, “
Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer
,”
J. Appl. Phys.
125
(
4
),
045302
(
2019
).
12.
M.
Jeong
,
J. P.
Freedman
,
H. J.
Liang
,
C.-M.
Chow
,
V. M.
Sokalski
,
J. A.
Bain
, and
J. A.
Malen
, “
Enhancement of thermal conductance at metal-dielectric interfaces using subnanometer metal adhesion layers
,”
Phys. Rev. Appl.
5
(
1
),
014009
(
2016
).
13.
D.
Ma
,
Y.
Xing
, and
L.
Zhang
, “
Reducing interfacial thermal resistance by interlayer
,”
J. Phys.: Condens. Matter
35
(
5
),
053001
(
2023
).
14.
J. C.
Duda
,
C.-Y. P.
Yang
,
B. M.
Foley
,
R.
Cheaito
,
D. L.
Medlin
,
R. E.
Jones
, and
P. E.
Hopkins
, “
Influence of interfacial properties on thermal transport at gold: Silicon contacts
,”
Appl. Phys. Lett.
102
(
8
),
081902
(
2013
).
15.
M.
Mozafarifard
,
Y.
Liao
,
Q.
Nian
, and
Y.
Wang
, “
Two-temperature time-fractional model for electron-phonon coupled interfacial thermal transport
,”
Int. J. Heat Mass Transfer
202
,
123759
(
2023
).
16.
M.
Blank
and
L.
Weber
, “
Influence of the thickness of a nanometric copper interlayer on Au/dielectric thermal boundary conductance
,”
J. Appl. Phys.
124
(
10
),
105304
(
2018
).
17.
H. T.
Aller
,
J. A.
Malen
, and
A. J. H.
McGaughey
, “
Universal model for predicting the thermal boundary conductance of a multilayered-metal–dielectric interface
,”
Phys. Rev. Appl.
15
(
6
),
064043
(
2021
).
18.
M.
Blank
,
G.
Schneider
,
J.
Ordonez-Miranda
, and
L.
Weber
, “
Role of the electron-phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers
,”
J. Appl. Phys.
126
(
16
),
165302
(
2019
).
19.
S. M.
Oommen
,
L.
Fallarino
,
J.
Heinze
,
O.
Hellwig
, and
S.
Pisana
, “
Role of vibrational properties and electron–phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers
,”
J. Phys.: Condens. Matter
34
(
46
),
465701
(
2022
).
20.
W.
Miao
and
M.
Wang
, “
Importance of electron-phonon coupling in thermal transport in metal/semiconductor multilayer films
,”
Int. J. Heat Mass Transfer
200
,
123538
(
2023
).
21.
Q.
Li
,
F.
Liu
,
S.
Hu
,
H.
Song
,
S.
Yang
,
H.
Jiang
,
T.
Wang
,
Y. K.
Koh
,
C.
Zhao
,
F.
Kang
,
J.
Wu
,
X.
Gu
,
B.
Sun
, and
X.
Wang
, “
Inelastic phonon transport across atomically sharp metal/semiconductor interfaces
,”
Nat. Commun.
13
(
1
),
4901
(
2022
).
22.
Z.
Cheng
,
Y. R.
Koh
,
H.
Ahmad
,
R.
Hu
,
J.
Shi
,
M. E.
Liao
,
Y.
Wang
,
T.
Bai
,
R.
Li
,
E.
Lee
,
E. A.
Clinton
,
C. M.
Matthews
,
Z.
Engel
,
L.
Yates
,
T.
Luo
,
M. S.
Goorsky
,
W. A.
Doolittle
,
Z.
Tian
,
P. E.
Hopkins
, and
S.
Graham
, “
Thermal conductance across harmonic-matched epitaxial Al-sapphire heterointerfaces
,”
Commun. Phys.
3
(
1
),
115
(
2020
).
23.
B.
Meng
,
Y.
Ma
,
X.
Wang
, and
C.
Yuan
, “
Quantitative study on thermoreflectance linear relation
,”
J. Appl. Phys.
134
(
11
),
115102
(
2023
).
24.
G.
Ma
,
Y.
Wang
,
R.
Xia
,
B.
Meng
,
S.
Yuan
,
B.
Zhou
, and
C.
Yuan
, “
Modulating microstructure and thermal properties of diamond/SiNx/GaN multilayer structure by diamond growth temperature
,”
Diamond Related Mater.
141
,
110717
(
2024
).
25.
X.
Xiao
,
Y.
Mao
,
B.
Meng
,
G.
Ma
,
K.
Hušeková
,
F.
Egyenes
,
A.
Rosová
,
E.
Dobročka
,
P.
Eliáš
,
M.
Ťapajna
,
F.
Gucmann
, and
C.
Yuan
, “
Phase‐dependent phonon heat transport in nanoscale gallium oxide thin films
,”
Small
20
,
2309961
(
2023
).
26.
Y.
Wang
,
B.
Zhou
,
G.
Ma
,
J.
Zhi
,
C.
Yuan
,
H.
Sun
,
Y.
Ma
,
J.
Gao
,
Y.
Wang
, and
S.
Yu
, “
Effect of bias-enhanced nucleation on the microstructure and thermal boundary resistance of GaN/SiNx/diamond multilayer composites
,”
Mater. Charact.
201
,
112985
(
2023
).
27.
S. M.
Oommen
and
S.
Pisana
, “
Role of the electron–phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers
,”
J. Phys.: Condens. Matter
33
(
8
),
085702
(
2021
).
28.
A.
Majumdar
and
P.
Reddy
, “
Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces
,”
Appl. Phys. Lett.
84
(
23
),
4768
4770
(
2004
).
29.
W.
Wang
and
D. G.
Cahill
, “
Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu
,”
Phys. Rev. Lett.
109
(
17
),
175503
(
2012
).
30.
A. P.
Caffrey
,
P. E.
Hopkins
,
J. M.
Klopf
, and
P. M.
Norris
, “
Thin film non-noble transition metal thermophysical properties
,”
Microscale Thermophys. Eng.
9
(
4
),
365
377
(
2005
).
31.
W.
Hübner
and
G. P.
Zhang
, “
Ultrafast spin dynamics in nickel
,”
Phys. Rev. B
58
(
10
),
R5920
R5923
(
1998
).
32.
S.-S.
Wellershoff
,
J.
Hohlfeld
,
J.
Güdde
, and
E.
Matthias
, “
The role of electron–phonon coupling in femtosecond laser damage of metals
,”
Appl. Phys. A
69
(
S1
),
S99
S107
(
1999
).
33.
C.
Monachon
,
L.
Weber
, and
C.
Dames
, “
Thermal boundary conductance: A materials science perspective
,”
Annu. Rev. Mater. Res.
46
(
1
),
433
463
(
2016
).
34.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
(
3
),
605
668
(
1989
).
35.
C.
Dames
and
G.
Chen
, “
Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
,”
J. Appl. Phys.
95
(
2
),
682
693
(
2004
).
36.
M.
Blank
and
L.
Weber
, “
Towards a coherent database of thermal boundary conductance at metal/dielectric interfaces
,”
J. Appl. Phys.
125
(
9
),
095302
(
2019
).
37.
P.
Reddy
,
K.
Castelino
, and
A.
Majumdar
, “
Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion
,”
Appl. Phys. Lett.
87
(
21
),
211908
(
2005
).
38.
J. C.
Duda
,
T. E.
Beechem
,
J. L.
Smoyer
,
P. M.
Norris
, and
P. E.
Hopkins
, “
Role of dispersion on phononic thermal boundary conductance
,”
J. Appl. Phys.
108
(
7
),
073515
(
2010
).
39.
Z.
Tong
,
S.
Li
,
X.
Ruan
, and
H.
Bao
, “
Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals
,”
Phys. Rev. B
100
(
14
),
144306
(
2019
).
40.
V.
Janardhanam
,
S.
Boldbaatar
,
I.
Jyothi
,
D.-H.
Kim
,
K.-H.
Shim
, and
C.-J.
Choi
, “
Rapid-thermal-annealing-induced microstructural evolution of Au/Ni/β-Ga2O3 Schottky diodes correlated with their electrical properties
,”
J. Alloys Compd.
918
,
165622
(
2022
).
You do not currently have access to this content.