The paper focuses on exploring the left-handed microwave properties of a double negative metamaterial formed by utilizing elements from two natural materials: (a) thin-layer ferrite, which exhibits effective negative permeability, and (b) thin-layer TiO2 (memristor), which exhibits effective negative permittivity. Both of these natural materials possess negative constitutive parameters within the frequency band where they exhibit left-handed properties. We have defined the conditions under which a backward wave appears in the double negative frequency band. We analyze a left-handed metamaterial (LHM) for the microwave frequency band formed by a multilayer structure from the above-mentioned materials. We have theoretically demonstrated the transparency of this LHM. Furthermore, we demonstrate the ability to control the electromagnetic properties of the metamaterial. This can be achieved not only by applying both static magnetic and static electric fields but also by solely using a static electric field. The latter is one of the main advantages of this structure for technological implementation. We discuss potential applications of the designed structure as a component of microwave electronics. The capability to control various resistance states of nanoscaled TiOX with low voltage offers further control over the properties of the left-handed metamaterial.

1.
V. G.
Veselago
, “
The electrodynamics of substances with simultaneously negative values of ε and μ
,”
Sov. Phys. Usp.
10
,
509
(
1968
).
2.
S. I.
Tarapov
and
D. P.
Belozorov
, “
Microwaves in dispersive magnetic composite media (Review Article)
,”
Low Temp. Phys.
38
,
603
625
(
2012
).
3.
J. P.
Turpin
,
J. A.
Bossard
,
K. L.
Morgan
,
D. H.
Werner
, and
P. L.
Werner
, “
Reconfigurable and tunable metamaterials: A review of the theory and applications
,”
Int. J. Antennas Propag.
2014
,
429837
.
4.
Y.
Huang
,
J.
Li
, and
G.
Wen
,
Active and Tunable Metamaterials [Internet]. Metamaterials—Devices and Applications
(
InTech
,
2017
).
5.
S. N.
Kumar
,
K. C. B.
Naidu
,
P.
Banerjee
,
T. A.
Babu
, and
S. R.
Venkata
, “
A review on metamaterials for device applications
,”
Crystals
11
,
518
(
2021
).
6.
R.
Wu
,
T.
Zhao
, and
J.
Xi
, “
Periodic ferrite-semiconductor layered composite with negative index of refraction
,”
J. Phys.
19
,
026211
(
2007
).
7.
O. V.
Shramkova
, “
Transmission properties of ferrite semiconductor periodic structure
,”
Prog. Electromagn. Res. M
7
,
71
85
(
2009
).
8.
A. A.
Bulgakov
,
A. A.
Girich
,
M. K.
Khodzitsky
,
O. V.
Shramkova
, and
S. I.
Tarapov
, “
Transmission of electromagnetic waves in a magnetic fine-stratified structure
,”
J. Opt. Soc. Am. B
26
,
B156
B160
(
2009
).
9.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley & Sons, N.Y
.,
2005
).
10.
A.
Animaly
,
Intermediate of Quantum Theory of Crystalline Solids
(
Presentice-Hall
,
New Delhi
,
1978
).
11.
A.
Girich
,
S.
Nedukh
,
S.
Polevoy
,
K.
Sova
,
S.
Tarapov
, and
A.
Vakula
, “
Enhancement of the microwave photon-magnon coupling strength for a planar fabricated resonator
,”
Sci. Rep.
13
,
924
(
2023
).
12.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
13.
A. C.
Torrezan
,
J. P.
Strachan
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
, “
Sub-nanosecond switching of a tantalum oxide memristor
,”
Nanotechnology
22
,
485203
(
2011
).
14.
G. M.
Turner
,
M. C.
Beard
, and
C. A.
Schmuttenmaer
, “
Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide
,”
J. Phys. Chem. B
106
,
11716
11719
(
2002
).
15.
N. V.
Smith
, “
Classical generalization of the Drude formula for the optical conductivity
,”
Phys. Rev. B
64
,
155106
(
2001
).
16.
B.
Özkal
,
S.
Kazan
,
O.
Karataş
,
G.
Ekinci
,
L.
Arda
, and
B. Z.
Rameev
, “
Fabrication and characterization of TiOx based single-cell memristive devices
,”
Mater. Res. Express
10
,
125901
(
2023
).
17.
D. P.
Belozorov
,
A. A.
Girich
,
S. I.
Tarapov
,
A. M.
Pogorily
,
A. I.
Tovstolytkin
,
A. G.
Belous
, and
S. A.
Solopan
, “
Left-handed properties of manganite-perovskites L a ( 1 x ) S r x M n O 3 at various dopant concentrations
,”
AIP Adv.
4
,
037116
(
2014
).
18.
D.
Ielmini
, “
Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks
,”
Microelectron. Eng.
190
,
44
53
(
2018
).
19.
Q.
Xia
and
J. J.
Yang
, “
Memristive crossbar arrays for brain-inspired computing
,”
Nat. Mater.
18
,
309
323
(
2019
).
20.
R.
Midya
,
Z.
Wang
,
M.
Rao
,
N. K.
Upadhyay
, and
J. J.
Yang
,
RRAM/Memristor for Computing
, 2nd ed. (
Woodhead Publishing
,
2019
), pp.
539
583
.
21.
W.
Sun
,
B.
Gao
,
M.
Chi
,
Q.
Xia
,
J. J.
Yang
,
H.
Qian
, and
H.
Wu
, “
Understanding memristive switching via in situ characterization and device modeling
,”
Nat. Commun.
10
,
3453
(
2019
).
22.
W.
Huh
,
D.
Lee
, and
C.-H.
Lee
, “
Memristors based on 2D materials as an artificial synapse for neuromorphic electronics
,”
Adv. Mater.
32
,
2002092
(
2020
).
You do not currently have access to this content.