Due to the excellent accuracy, the optical lattice clock (OLC) has not only achieved impressive results in frequency measurement but also gradually plays an important role in quantum precision measurement. In this paper, we propose a scheme for measuring gravity at the sub-millimeter scale extracted from the Rabi spectrum based on Super-Bloch oscillations of atoms in the OLC. Our proposal can be realized on the existing OLC platform without significant change. Under realistic existing experimental parameters of 87 S r OLC, we determine the optimal experimental conditions and obtain a sensitivity of 5 μ Gal / Hz in the quantum projection noise limit, which is 50 times better than the previous method at the sub-millimeter scale under the same consideration. Another advantage of our proposal is that it is insensitive to the noise of the lattice laser, which contributes to the major uncertainty of the previous measurement (PRA 86, 033615). Our research will promote the development of OLC geoscopy.

1.
A. D.
Cronin
,
J.
Schmiedmayer
, and
D. E.
Pritchard
, “
Optics and interferometry with atoms and molecules
,”
Rev. Mod. Phys.
81
,
1051
1129
(
2009
).
2.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
, “
Measurement of gravitational acceleration by dropping atoms
,”
Nature
400
,
849
852
(
1999
).
3.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
, “
Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer
,”
Appl. Phys. B
54
,
321
322
(
1992
).
4.
V.
Xu
,
M.
Jaffe
,
C. D.
Panda
,
S. L.
Kristensen
,
L. W.
Clark
, and
H.
Müller
, “
Probing gravity by holding atoms for 20 seconds
,”
Science
366
,
745
749
(
2019
).
5.
G.
Ferrari
,
N.
Poli
,
F.
Sorrentino
, and
G. M.
Tino
, “
Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale
,”
Phys. Rev. Lett.
97
,
060402
(
2006
).
6.
H.
Müller
,
S.
Chiow
,
S.
Herrmann
,
S.
Chu
, and
K.-Y.
Chung
, “
Atom-interferometry tests of the isotropy of post-Newtonian gravity
,”
Phys. Rev. Lett.
100
,
031101
(
2008
).
7.
Z.-K.
Hu
,
B.-L.
Sun
,
X.-C.
Duan
,
M.-K.
Zhou
,
L.-L.
Chen
,
S.
Zhan
,
Q.-Z.
Zhang
, and
J.
Luo
, “
Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter
,”
Phys. Rev. A
88
,
043610
(
2013
).
8.
K. S.
Hardman
,
P. J.
Everitt
,
G. D.
McDonald
,
P.
Manju
,
P. B.
Wigley
,
M. A.
Sooriyabandara
,
C. C. N.
Kuhn
,
J. E.
Debs
,
J. D.
Close
, and
N. P.
Robins
, “
Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: A high precision, quantum sensor
,”
Phys. Rev. Lett.
117
,
138501
(
2016
).
9.
J. B.
Fixler
,
G. T.
Foster
,
J. M.
McGuirk
, and
M. A.
Kasevich
, “
Atom interferometer measurement of the Newtonian constant of gravity
,”
Science
315
,
74
77
(
2007
).
10.
G.
Lamporesi
,
A.
Bertoldi
,
L.
Cacciapuoti
,
M.
Prevedelli
, and
G. M.
Tino
, “
Determination of the Newtonian gravitational constant using atom interferometry
,”
Phys. Rev. Lett.
100
,
050801
(
2008
).
11.
G.
Rosi
,
F.
Sorrentino
,
L.
Cacciapuoti
,
M.
Prevedelli
, and
G. M.
Tino
, “
Precision measurement of the Newtonian gravitational constant using cold atoms
,”
Nature
510
,
518
521
(
2014
).
12.
J. M.
McGuirk
,
G. T.
Foster
,
J. B.
Fixler
,
M. J.
Snadden
, and
M. A.
Kasevich
, “
Sensitive absolute-gravity gradiometry using atom interferometry
,”
Phys. Rev. A
65
,
033608
(
2002
).
13.
N.
Poli
,
F.-Y.
Wang
,
M. G.
Tarallo
,
A.
Alberti
,
M.
Prevedelli
, and
G. M.
Tino
, “
Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter
,”
Phys. Rev. Lett.
106
,
038501
(
2011
).
14.
M. G.
Tarallo
,
A.
Alberti
,
N.
Poli
,
M. L.
Chiofalo
,
F.-Y.
Wang
, and
G. M.
Tino
, “
Delocalization-enhanced Bloch oscillations and driven resonant tunneling in optical lattices for precision force measurements
,”
Phys. Rev. A
86
,
033615
(
2012
).
15.
T.
Bothwell
,
C. J.
Kennedy
,
A.
Aeppli
,
D.
Kedar
,
J. M.
Robinson
,
E.
Oelker
,
A.
Staron
, and
J.
Ye
, “
Resolving the gravitational redshift across a millimetre-scale atomic sample
,”
Nature
602
,
420
424
(
2022
).
16.
E.
Haller
,
R.
Hart
,
M. J.
Mark
,
J. G.
Danzl
,
L.
Reichsöllner
, and
H.-C.
Nägerl
, “
Inducing transport in a dissipation-free lattice with super Bloch oscillations
,”
Phys. Rev. Lett.
104
,
200403
(
2010
).
17.
K.
Kudo
and
T. S.
Monteiro
, “
Theoretical analysis of super–Bloch oscillations
,”
Phys. Rev. A
83
,
053627
(
2011
).
18.
S.
Arlinghaus
and
M.
Holthaus
, “
Generalized acceleration theorem for spatiotemporal Bloch waves
,”
Phys. Rev. B
84
,
054301
(
2011
).
19.
M.-J.
Yin
,
X.-T.
Lu
,
T.
Li
,
J.-J.
Xia
,
T.
Wang
,
X.-F.
Zhang
, and
H.
Chang
, “
Floquet engineering Hz-level rabi spectra in shallow optical lattice clock
,”
Phys. Rev. Lett.
128
,
073603
(
2022
).
20.
M.-J.
Yin
,
T.
Wang
,
X.-T.
Lu
,
T.
Li
,
Y.-B.
Wang
,
X.-F.
Zhang
,
W.-D.
Li
,
A.
Smerzi
, and
H.
Chang
, “
Rabi spectroscopy and sensitivity of a Floquet engineered optical lattice clock
,”
Chin. Phys. Lett.
38
,
073201
(
2021
).
21.
R.
Jáuregui
,
N.
Poli
,
G.
Roati
, and
G.
Modugno
, “
Anharmonic parametric excitation in optical lattices
,”
Phys. Rev. A
64
,
033403
(
2001
).
22.
J.
Zhou
,
P.
Huang
,
Q.
Zhang
,
Z.
Wang
,
T.
Tan
,
X.
Xu
,
F.
Shi
,
X.
Rong
,
S.
Ashhab
, and
J.
Du
, “
Observation of time-domain rabi oscillations in the Landau-Zener regime with a single electronic spin
,”
Phys. Rev. Lett.
112
,
010503
(
2014
).
23.
S.
Kolkowitz
,
S. L.
Bromley
,
T.
Bothwell
,
M. L.
Wall
,
G. E.
Marti
,
A. P.
Koller
,
X.
Zhang
,
A. M.
Rey
, and
J.
Ye
, “
Spin-orbit-coupled fermions in an optical lattice clock
,”
Nature
542
,
66
70
(
2017
).
24.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
, “
Quantum sensing
,”
Rev. Mod. Phys.
89
,
035002
(
2017
).
25.
L.
Pezzè
,
A.
Smerzi
,
M. K.
Oberthaler
,
R.
Schmied
, and
P.
Treutlein
, “
Quantum metrology with nonclassical states of atomic ensembles
,”
Rev. Mod. Phys.
90
,
035005
(
2018
).
26.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Advances in quantum metrology
,”
Nat. Photonics
5
,
222
229
(
2011
).
27.
Boulder Atomic Clock Optical Network (BACON) Collaboration
, “
Frequency ratio measurements at 18-digit accuracy using an optical clock network
,”
Nature
591
,
564
569
(
2021
).
28.
S.
Pötting
,
M.
Cramer
, and
P.
Meystre
, “
Momentum-state engineering and control in Bose-Einstein condensates
,”
Phys. Rev. A
64
,
063613
(
2001
).

Supplementary Material

You do not currently have access to this content.