With the development of artificial intelligence technology, it remains a challenge to improve the resistive switching performance of next-generation nonvolatile ferroelectric memristor device (FMD). Here, we report an epitaxial Na0.5Bi0.5TiO3 ferroelectric memristor device (NBT-FMD) with temperature sensing. The NBT epitaxial films with strong polarization strength and suitable oxygen vacancy concentration were obtained by temperature adjustment (700 °C). In addition, the function of the spiking-time-dependent plasticity and paired-pulse facilitation is simulated in ferroelectric memristor devices of Pt/NBT/SrRuO3 (SRO)/SrTiO3 (STO). More importantly, we have designed a neuronal circuit to confirm that NBT-FMD can serve as temperature receptors on the human skin, paving the way for bio-inspired application.

1.
M. T.
Sharbati
,
Y. H.
Du
,
J.
Torres
et al, “
Low-power, electrochemically tunable graphene synapses for neuromorphic computing
,”
Adv. Mater.
30
(
36
),
1802353
(
2018
).
2.
Y. H.
Liu
,
L. Q.
Zhu
,
P.
Feng
et al, “
Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes
,”
Adv. Mater.
27
(
37
),
5599
(
2015
).
3.
E. R.
Kandel
, “
The molecular biology of memory storage: A dialogue between genes and synapses
,”
Science
294
(
5544
),
1030
(
2001
).
4.
X. Y.
Xiong
,
F.
Wu
,
Y.
Ouyang
et al, “
Oxygen incorporated MoS2 for rectification-mediated resistive switching and artificial neural network
,”
Adv. Funct. Mater.
2213348
(published online,
2023
).
5.
Y. F.
Zhao
,
C. H.
Su
,
G. Y.
Shen
et al, “
Donor engineering tuning the analog switching range and operational stability of organic synaptic transistors for neuromorphic systems
,”
Adv. Funct. Mater.
32
(
36
),
2205744
(
2022
).
6.
X.
Deng
,
S. Q.
Wang
,
Y. X.
Liu
et al, “
A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing
,”
Adv. Funct. Mater.
31
(
23
),
2101099
(
2021
).
7.
X.
Yan
,
H.
He
,
G.
Liu
et al, “
A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3-CeO2 films on silicon
,”
Adv. Mater.
34
(
23
),
2110343
(
2022
).
8.
X. Z.
Niu
,
B. B.
Tian
,
Q. X.
Zhu
et al, “
Ferroelectric polymers for neuromorphic computing
,”
Appl. Phys. Rev.
9
(
2
),
021309
(
2022
).
9.
X.
Yan
,
X.
Jia
,
Y.
Zhang
et al, “
A low-power Si: HfO2 ferroelectric tunnel memristor for spiking neural networks
,”
Nano Energy
107
,
108091
(
2023
).
10.
C.
Ma
,
Z.
Luo
,
W.
Huang
et al, “
Sub-nanosecond memristor based on ferroelectric tunnel junction
,”
Nat. Commun.
11
(
1
),
1439
(
2020
).
11.
Z. Y.
Yue
,
Z. D.
Zhang
, and
Z. J.
Wang
, “
Enhanced memristor performance via coupling effect of oxygen vacancy and ferroelectric polarization
,”
J. Mater. Sci. Technol.
171
,
139
(
2024
).
12.
A.
Chen
,
W.
Zhang
,
L. R.
Dedon
et al, “
Couplings of polarization with interfacial deep trap and Schottky interface controlled ferroelectric memristive switching
,”
Adv. Funct. Mater.
30
(
43
),
2000664
(
2020
).
13.
G.
Di Martino
,
A.
Demetriadou
,
W.
Li
et al, “
Real-time in situ optical tracking of oxygen vacancy migration in memristors
,”
Nat. Electron.
3
(
11
),
687
(
2020
).
14.
Y.
Bai
,
Z. J.
Wang
,
Y. N.
Chen
et al, “
Resistive switching and modulation of Pb(Zr0.4Ti0.6)O3/Nb: SrTiO3 heterostructures
,”
ACS Appl. Mater. Interfaces
8
(
48
),
32948
(
2016
).
15.
Q.
Jin
,
C.
Zheng
,
Y.
Zhang
et al, “
Enhanced resistive memory in Nb-doped BaTiO3 ferroelectric diodes
,”
Appl. Phys. Lett.
111
(
3
),
032902
(
2017
).
16.
J.
Song
,
J.
Gao
,
S.
Zhang
et al, “
Structure and electrical properties of Na0.5Bi0.5TiO3 epitaxial films with (110) orientation
,”
Crystals
9
(
11
),
558
(
2019
).
17.
C.
Yang
,
J.
Qian
,
Y.
Han
et al, “
Design of an all-inorganic flexible Na0.5Bi0.5TiO3-based film capacitor with giant and stable energy storage performance
,”
J. Mater. Chem. A
7
(
39
),
22366
(
2019
).
18.
C.
Yun
,
M.
Webb
,
W. W.
Li
et al, “
High performance, electroforming-free, thin film memristors using ionic Na0.5Bi0.5TiO3
,”
J. Mater. Chem. C
9
,
4522
4531
(
2021
).
19.
H.
Morioka
,
S.
Yokoyama
,
T.
Oikawa
et al, “
Spontaneous polarization change with Zr∕(Zr + Ti) ratios in perfectly polar-axis-orientated epitaxial tetragonal Pb(Zr,Ti)O3 films
,”
Appl. Phys. Lett.
85
(
16
),
3516
(
2004
).
20.
M.
Li
,
J.
Zhou
,
X.
Jing
et al, “
Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies
,”
Adv. Elect. Mater.
1
(
6
),
1500069
(
2015
).
21.
W. L.
Tanand
and
C. R.
McNeill
, “
X-ray diffraction of photovoltaic perovskites: Principles and applications
,”
Appl. Phys. Rev.
9
(
2
),
021310
(
2022
).
22.
D. H.
Lee
,
Y.
Lee
,
K.
Yang
et al, “
Domains and domain dynamics in fluorite-structured ferroelectrics
,”
Appl. Phys. Rev.
8
(
2
),
021312
(
2021
).
23.
L.
Li
,
L.
Xie
, and
X.
Pan
, “
Real-time studies of ferroelectric domain switching: A review
,”
Rep. Prog. Phys.
82
(
12
),
126502
(
2019
).
24.
X.
Ren
,
N.
Meng
,
H.
Zhang
et al, “
Giant energy storage density in PVDF with internal stress engineered polar nanostructures
,”
Nano Energy
72
,
104662
(
2020
).
25.
J.
Jiang
,
X.
Zhang
,
Z.
Dan
et al, “
Tuning phase composition of polymer nanocomposites toward high energy density and high discharge efficiency by nonequilibrium processing
,”
ACS Appl. Mater. Interfaces
9
(
35
),
29717
(
2017
).
26.
F.
Yang
,
M.
Li
,
L.
Li
et al, “
Defect chemistry and electrical properties of sodium bismuth titanate perovskite
,”
J. Mater. Chem. A
6
(
13
),
5243
(
2018
).
27.
Z.
Jiang
,
H.
Yang
,
L.
Cao
et al, “
Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration
,”
Chem. Eng. J.
414
,
128921
(
2021
).
28.
G. D.
Hu
,
S. H.
Fan
,
C. H.
Yang
et al, “
Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film
,”
Appl. Phys. Lett.
92
(
19
),
192905
(
2008
).
29.
N.
Brunel
,
V.
Hakim
,
P.
Isope
et al, “
Optimal information storage and the distribution of synaptic weights
,”
Neuron
43
(
5
),
745
(
2004
).
30.
Y.
Pei
,
Z.
Li
,
B.
Li
et al, “
A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS‐core/shell (SC) nanorod arrays optoelectronic memristor
,”
Adv. Funct. Mater.
32
(
29
),
2203454
(
2022
).
31.
M.
Prezioso
,
F.
Merrikh-Bayat
,
B. D.
Hoskins
et al, “
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
,”
Nature
521
(
7550
),
61
(
2015
).
32.
X. B.
Yan
,
Y. F.
Pei
,
H. W.
Chen
et al, “
Self-assembled networked PbS Distribution quantum dots for resistive switching and artificial synapse performance boost of memristors
,”
Adv. Mater.
31
(
7
),
1805284
(
2019
).
33.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
et al, “
Nanoscale memristor device as synapse in neuromorphic systems
,”
Nano Lett.
10
(
4
),
1297
(
2010
).
34.
C.
Du
,
W.
Ma
,
T.
Chang
et al, “
Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics
,”
Adv. Funct. Mater.
25
(
27
),
4290
(
2015
).
35.
L.
Zhou
,
J. Y.
Mao
,
Y.
Ren
et al, “
Biological spiking synapse constructed from solution processed bimetal core–shell nanoparticle based composites
,”
Small
14
(
28
),
1800288
(
2018
).
36.
X. B.
Yan
,
J. H.
Zhao
,
S.
Liu
et al, “
Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing
,”
Adv. Funct. Mater.
28
(
1
),
1705320
(
2018
).
37.
A. A.
Grinberg
,
S.
Luryi
,
M.
Pinto
et al, “
Space-charge-limited current in a film
,”
IEEE Trans. Electron Devices
36
(
6
),
1162
(
1989
).
38.
S.
Kim
,
K.
Heo
,
S.
Lee
et al, “
Ferroelectric polymer-based artificial synapse for neuromorphic computing
,”
Nanoscale Horiz.
6
(
2
),
139
(
2021
).
39.
R. J.
Schepersand
and
M.
Ringkamp
, “
Thermoreceptors and thermosensitive afferents
,”
Neurosci. Biobehav. Rev.
34
(
2
),
177
(
2010
).
40.
F.
Yang
,
M.
Li
,
L.
Li
,
P.
Wu
et al, “
Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: Approaching the limit?
,”
J. Mater. Chem. A
6
,
5243
5254
(
2018
).
41.
R.
Wu
,
A.
Kursumovic
,
X.
Gao
et al, “
Design of a vertical composite thin film system with ultralow leakage to yield large converse magnetoelectric effect
,”
ACS Appl. Mater. Interfaces
10
,
18237
18245
(
2018
).
42.
C. H.
Yang
,
W. B.
Wu
,
F.
Yang
et al, “
Dielectric and ferroelectric properties of A-site non-stoichiometric Na0.5Bi0.5TiO3-based thin films
,”
Mater. Lett.
66
,
86
88
(
2012
).
43.
H.
Peng
,
J.
Kui-Juan
,
L.
Hui-Bin
et al, “
Influence of oxygen vacancy on transport property in perovskite oxide heterostructures
,”
Chin. Phys. Lett.
26
,
027301
(
2009
).

Supplementary Material

You do not currently have access to this content.