The manipulation of valley-dependent properties in two-dimensional (2D) materials is intriguing for developing valleytronics. Using first-principles calculations, we explore valley-dependent properties of Janus SVGeN2 monolayer and reveal large and tunable valley polarization by tensile strain. The SVGeN2 monolayer possesses excellent stability. Furthermore, strain-driven topological magneto-valley phase transitions are predicted for this monolayer, leading to the valley quantum anomalous Hall (VQAH) phenomenon. The VQAH state, which is featured by the coexistence of complete valley polarization and topological phase, is confirmed by sign reversal of Berry curvature and the nontrivial band topology. The calculated magnetic anisotropy energy indicates that the Janus SVGeN2 monolayer possesses a ferromagnetic ground state and in-plane magnetization. Our investigation provides some physical insights into the strain-driven topological phase transition and manipulation of valley-dependent properties to realize giant valley polarization in the Janus 2D magnet.

1.
J. R.
Schaibley
,
H.
Yu
,
G.
Clark
,
P.
Rivera
,
J. S.
Ross
,
K. L.
Seyler
,
W.
Yao
, and
X.
Xu
, “
Valleytronics in 2D materials
,”
Nat. Rev. Mater.
1
,
16055
(
2016
).
2.
S. A.
Vitale
,
D.
Nezich
,
J. O.
Varghese
,
P.
Kim
,
N.
Gedik
,
P.
Jarillo-Herrero
,
D.
Xiao
, and
M.
Rothschild
, “
Valleytronics: Opportunities, challenges, and paths forward
,”
Small
14
,
1801483
(
2018
).
3.
Y.-L.
Hong
,
Z.
Liu
,
L.
Wang
,
T.
Zhou
,
W.
Ma
,
C.
Xu
,
S.
Feng
,
L.
Chen
,
M.-L.
Chen
,
D.-M.
Sun
,
X.-Q.
Chen
,
H.-M.
Cheng
, and
W.
Ren
, “
Chemical vapor deposition of layered two-dimensional mosi2n4 materials
,”
Science
369
,
670
674
(
2020
).
4.
S.
Li
,
Q.
Wang
,
C.
Zhang
,
P.
Guo
, and
S. A.
Yang
, “
Correlation-driven topological and valley states in monolayer VSi 2 P 4
,”
Phys. Rev. B
104
,
085149
(
2021
).
5.
Y.
Liu
,
T.
Zhang
,
K.
Dou
,
W.
Du
,
R.
Peng
,
Y.
Dai
,
B.
Huang
, and
Y.
Ma
, “
Valley-contrasting physics in single-layer CrSi2N4 and CrSi2P4
,”
J. Phys. Chem. Lett.
12
,
8341
8346
(
2021
).
6.
Y.
Feng
,
Z.
Wang
,
X.
Zuo
, and
G.
Gao
, “
Electronic phase transition, spin filtering effect, and spin Seebeck effect in 2D high-spin-polarized VSi2X4 (X = N, P, As)
,”
Appl. Phys. Lett.
120
,
092405
(
2022
).
7.
J.
Yuan
,
Q.
Wei
,
M.
Sun
,
X.
Yan
,
Y.
Cai
,
L.
Shen
, and
U.
Schwingenschlögl
, “
Protected valley states and generation of valley- and spin-polarized current in monolayer M A 2 Z 4
,”
Phys. Rev. B
105
,
195151
(
2022
).
8.
R.
Islam
,
R.
Verma
,
B.
Ghosh
,
Z.
Muhammad
,
A.
Bansil
,
C.
Autieri
, and
B.
Singh
, “
Switchable large-gap quantum spin Hall state in the two-dimensional M Si 2 Z 4 class of materials
,”
Phys. Rev. B
106
,
245149
(
2022
).
9.
Y.
Yin
,
Q.
Gong
,
M.
Yi
, and
W.
Guo
, “
Emerging versatile two-dimensional MoSi2N4 family
,”
Adv. Funct. Mater.
33
,
2214050
(
2023
).
10.
C. C.
Tho
,
S.-D.
Guo
,
S.-J.
Liang
,
W. L.
Ong
,
C. S.
Lau
,
L.
Cao
,
G.
Wang
, and
Y. S.
Ang
, “
MA2Z4 family heterostructures: Promises and prospects
,”
Appl. Phys. Rev.
10
,
041307
(
2023
).
11.
X.
Zhou
,
R.-W.
Zhang
,
Z.
Zhang
,
W.
Feng
,
Y.
Mokrousov
, and
Y.
Yao
, “
Sign-reversible valley-dependent berry phase effects in 2D valley-half-semiconductors
,”
npj Comput. Mater.
7
,
160
(
2021
).
12.
Q.
Cui
,
Y.
Zhu
,
J.
Liang
,
P.
Cui
, and
H.
Yang
, “
Spin-valley coupling in a two-dimensional VSi 2 N 4 monolayer
,”
Phys. Rev. B
103
,
085421
(
2021
).
13.
X.
Feng
,
X.
Xu
,
Z.
He
,
R.
Peng
,
Y.
Dai
,
B.
Huang
, and
Y.
Ma
, “
Valley-related multiple Hall effect in monolayer VSi 2 P 4
,”
Phys. Rev. B
104
,
075421
(
2021
).
14.
D.
Dey
,
A.
Ray
, and
L.
Yu
, “
Intrinsic ferromagnetism and restrictive thermodynamic stability in MA 2 N 4 and Janus VSiGeN 4 monolayers
,”
Phys. Rev. Mater.
6
,
L061002
(
2022
).
15.
C.
Lei
,
X.
Li
,
Y.
Ma
, and
Z.
Qian
, “
Reversible nonvolatile control of anomalous valley Hall effect in a multiferroic van der Waals heterostructure
,”
Phys. Rev. B
108
,
155431
(
2023
).
16.
X.
Feng
,
C. S.
Lau
,
S.-J.
Liang
,
C. H.
Lee
,
S. A.
Yang
, and
Y. S.
Ang
, “
Half-valley ohmic contact: Contact-limited valley-contrasting current injection
,”
Adv. Funct. Mater.
(published online 2023).
17.
N. T. T.
Binh
,
C. Q.
Nguyen
,
T. V.
Vu
, and
C. V.
Nguyen
, “
Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures
,”
J. Phys. Chem. Lett.
12
,
3934
3940
(
2021
).
18.
S.
Sheoran
,
A.
Phutela
,
R.
Moulik
, and
S.
Bhattacharya
, “
Manipulation of valley and spin properties in two-dimensional Janus WSiGeZ4 (Z = N, P, As) through symmetry control
,”
J. Phys. Chem. C
127
,
11396
11406
(
2023
).
19.
R. T.
Sibatov
,
R. M.
Meftakhutdinov
, and
A. I.
Kochaev
, “
Asymmetric XMoSiN2 (X = S, Se, Te) monolayers as novel promising 2D materials for nanoelectronics and photovoltaics
,”
Appl. Surf. Sci.
585
,
152465
(
2022
).
20.
P. T. L.
Tran
,
N. V.
Hieu
,
H.
Bui D
,
Q. N.
Cuong
, and
N. N.
Hieu
, “
First-principles examination of two-dimensional Janus quintuple-layer atomic structures XCrSiN2 (X = S, Se, and Te)
,”
Nanoscale Adv.
5
,
3104
3113
(
2023
).
21.
P.
Liu
,
S.
Liu
,
M.
Jia
,
H.
Yin
,
G.
Zhang
,
F.
Ren
,
B.
Wang
, and
C.
Liu
, “
Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer
,”
Appl. Phys. Lett.
121
,
063103
(
2022
).
22.
S.-D.
Guo
,
W.-Q.
Mu
,
J.-H.
Wang
,
Y.-X.
Yang
,
B.
Wang
, and
Y.-S.
Ang
, “
Strain effects on the topological and valley properties of the Janus monolayer VSiGeN 4
,”
Phys. Rev. B
106
,
064416
(
2022
).
23.
P.
Li
,
X.
Yang
,
Q.-S.
Jiang
,
Y.-Z.
Wu
, and
W.
Xun
, “
Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSi X N 4 ( X = C , Si , Ge , Sn , Pb ) monolayers
,”
Phys. Rev. Mater.
7
,
064002
(
2023
).
24.
S.-D.
Guo
,
Y.-L.
Tao
,
H.-T.
Guo
,
Z.-Y.
Zhao
,
B.
Wang
,
G.
Wang
, and
X.
Wang
, “
Possible electronic state quasi-half-valley metal in a VGe 2 P 4 monolayer
,”
Phys. Rev. B
107
,
054414
(
2023
).
25.
H.
Hu
,
W.-Y.
Tong
,
Y.-H.
Shen
,
X.
Wan
, and
C.-G.
Duan
, “
Concepts of the half-valley-metal and quantum anomalous valley Hall effect
,”
npj Comput. Mater.
6
,
129
(
2020
).
26.
H.
Sun
,
S.-S.
Li
,
W.-X.
Ji
, and
C.-W.
Zhang
, “
Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr
,”
Phys. Rev. B
105
,
195112
(
2022
).
27.
S.-D.
Guo
,
G.
Wang
, and
Y. S.
Ang
, “
Possible way to achieve valley-polarized quantum anomalous Hall insulator
,”
Appl. Phys. Lett.
123
,
173102
(
2023
).
28.
J.-D.
Zheng
,
Y.-F.
Zhao
,
Y.-F.
Tan
,
Z.
Guan
,
N.
Zhong
,
F.-Y.
Yue
,
P.-H.
Xiang
, and
C.-G.
Duan
, “
Coupling of ferroelectric and valley properties in 2D materials
,”
J. Appl. Phys.
132
,
120902
(
2022
).
29.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
31.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
32.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
33.
V.
Wang
,
N.
Xu
,
J.-C.
Liu
,
G.
Tang
, and
W.-T.
Geng
, “
VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code
,”
Comput. Phys. Commun.
267
,
108033
(
2021
).
34.
S.-W.
Kim
,
H.-J.
Kim
,
S.
Cheon
, and
T.-H.
Kim
, “
Circular dichroism of emergent chiral stacking orders in quasi-one dimensional charge density waves
,”
Phys. Rev. Lett.
128
,
046401
(
2022
).
35.
A. A.
Mostofi
,
J. R.
Yates
,
G.
Pizzi
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
, “
An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
185
,
2309
2310
(
2014
).
36.
Q.
Wu
,
S.
Zhang
,
H.-F.
Song
,
M.
Troyer
, and
A. A.
Soluyanov
, “
WannierTools: An open-source software package for novel topological materials
,”
Comput. Phys. Commun.
224
,
405
416
(
2018
).
37.
T.
Su
,
C. H.
Lee
,
S.-D.
Guo
,
G.
Wang
,
W.-L.
Ong
,
L.
Cao
,
W.
Zhao
,
S. A.
Yang
, and
Y. S.
Ang
, “
2D Janus niobium oxydihalide NbOXY: Multifunctional piezoelectric semiconductor for electronics, photonics, sensing and sustainable energy applications
,”
Mater. Today Phys.
31
,
101001
(
2023
).
38.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
, “
Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides
,”
Phys. Rev. Lett.
108
,
196802
(
2012
).
39.
Y.
Qi
,
C.
Yao
,
J.
Zhao
, and
H.
Zeng
, “
Tunable valley splitting in two-dimensional CrI3/MSi2P4 (M = Mo, W) heterostructures: Interlayer coupling effects
,”
Phys. Rev. B
108
,
125304
(
2023
).
40.
Q.
Li
,
C.-X.
Zhang
,
D.
Wang
,
K.-Q.
Chen
, and
L.-M.
Tang
, “
Giant valley splitting in a MoTe2/MnSe2 van der Waals heterostructure with room-temperature ferromagnetism
,”
Mater. Adv.
3
,
2927
2933
(
2022
).
41.
Y.-G.
Yao
,
L.
Kleinman
,
A. H.
MacDonald
,
J.
Sinova
,
T.
Jungwirth
,
D. S.
Wang
,
E.-G.
Wang
, and
Q.
Niu
, “
First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe
,”
Phys. Rev. Lett.
92
,
037204
(
2004
).
42.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
2007
(
2010
).
43.
Z.
Wang
and
G.
Zhou
, “
Lattice-strain control of flexible Janus indium chalcogenide monolayers for photocatalytic water splitting
,”
J. Phys. Chem. C
124
,
167
174
(
2020
).
44.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
(
2011
).
45.
S.
Oh
, “
The complete quantum Hall trio
,”
Science
340
,
153
154
(
2013
).
46.
H.
Pan
,
X.
Li
,
H.
Jiang
,
Y.
Yao
, and
S. A.
Yang
, “
Valley-polarized quantum anomalous Hall phase and disorder-induced valley-filtered chiral edge channels
,”
Phys. Rev. B
91
,
045404
(
2015
).
47.
S.-D.
Guo
,
Y.-L.
Tao
,
K.
Cheng
,
B.
Wang
, and
Y. S.
Ang
, “
Importance of magnetic shape anisotropy in determining magnetic and electronic properties of monolayer VSi2P4
,”
J. Phys.: Condens. Matter.
34
,
505802
(
2022
).
48.
G.
Aivazian
,
Z.
Gong
,
A. M.
Jones
,
R.-L.
Chu
,
J.
Yan
,
D. G.
Mandrus
,
C.
Zhang
,
D.
Cobden
,
W.
Yao
, and
X.
Xu
, “
Magnetic control of valley pseudospin in monolayer WSe2
,”
Nat. Phys.
11
,
148
152
(
2015
).
49.
J.
Zhao
,
X.
Jin
,
H.
Zeng
,
C.
Yao
, and
G.
Yan
, “
Spin-valley coupling and valley splitting in the MoSi2N4/CrCl3 van der Waals heterostructure
,”
Appl. Phys. Lett.
119
,
213101
(
2021
).
50.
F.
Zhan
,
B.
Zheng
,
X.
Xiao
,
J.
Fan
,
X.
Wu
, and
R.
Wang
, “
Magnetic field induced valley-polarized quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures
,”
Phys. Rev. B
105
,
035131
(
2022
).
51.
J.
Han
,
Y.
Feng
, and
G.
Gao
, “
A VSi2P4/FeCl2 van der Waals heterostructure: A two-dimensional reconfigurable magnetic diode
,”
Phys. Chem. Chem. Phys.
24
,
19734
19742
(
2022
).
52.
L.
Cao
,
G.
Zhou
,
Q.
Wang
,
L. K.
Ang
, and
Y. S.
Ang
, “
Two-dimensional van der Waals electrical contact to monolayer MoSi2N4
,”
Appl. Phys. Lett.
118
,
013106
(
2021
).
53.
Y.
Qi
,
C.
Yao
,
J.
Zhao
, and
H.
Zeng
, “
First principles study of BAs/MoSi2N4 van der Waals heterostructure: Tunable electronic and optical properties via vertical strain
,”
Phys. Chem. Chem. Phys.
25
,
28104
28112
(
2023
).
54.
Z.
Gao
,
Y.
He
, and
K.
Xiong
, “
Two-dimensional Janus SVAN2 (A = Si, Ge) monolayers with intrinsic semiconductor character and room temperature ferromagnetism: Tunable electronic properties via strain and an electric field
,”
Dalton Trans.
52
,
17416
17425
(
2023
).
55.
C. W.
Tan
,
L.
Xu
,
C. C.
Er
,
S.-P.
Chai
,
B.
Kozinsky
,
H. Y.
Yang
,
S. A.
Yang
,
J.
Lu
, and
Y. S.
Ang
, “
Toward sustainable ultrawide bandgap van der Waals materials: An ab initio screening effort
,”
Adv. Funct. Mater.
(published online 2023).

Supplementary Material

You do not currently have access to this content.