Chiral phonons have attracted increasing attention, as they play important roles in many different systems and processes. However, a method to control phonon chirality by external fields is still lacking. Here, we propose that in displacement-type ferroelectric materials, an external electric field can reverse the chirality of chiral phonons via ferroelectric switching. Using first-principles calculations, we demonstrate this point in the well-known two-dimensional ferroelectric In2Se3. This reversal may lead to a number of electrically switchable phenomena, such as chiral phonon induced magnetization, the phonon Hall effect, and possible topological interface chiral phonon modes at ferroelectric domain boundaries. Our work offers a way to control chiral phonons, which could be useful for the design and application of thermal or information devices based on them.

1.
L.
Zhang
and
Q.
Niu
, “
Chiral phonons at high-symmetry points in monolayer hexagonal lattices
,”
Phys. Rev. Lett.
115
,
115502
(
2015
).
2.
H.
Zhu
,
J.
Yi
,
M.-Y.
Li
,
J.
Xiao
,
L.
Zhang
,
C.-W.
Yang
,
R. A.
Kaindl
,
L.-J.
Li
,
Y.
Wang
, and
X.
Zhang
, “
Observation of chiral phonons
,”
Science
359
,
579
582
(
2018
).
3.
H.
Ueda
,
M.
García-Fernández
,
S.
Agrestini
,
C. P.
Romao
,
J.
van den Brink
,
N. A.
Spaldin
,
K.-J.
Zhou
, and
U.
Staub
, “
Chiral phonons in quartz probed by x-rays
,”
Nature
618
,
946
950
(
2023
).
4.
L.
Zhang
and
Q.
Niu
, “
Angular momentum of phonons and the Einstein–de Haas effect
,”
Phys. Rev. Lett.
112
,
085503
(
2014
).
5.
S. R.
Tauchert
,
M.
Volkov
,
D.
Ehberger
,
D.
Kazenwadel
,
M.
Evers
,
H.
Lange
,
A.
Donges
,
A.
Book
,
W.
Kreuzpaintner
,
U.
Nowak
et al, “
Polarized phonons carry angular momentum in ultrafast demagnetization
,”
Nature
602
,
73
77
(
2022
).
6.
D. M.
Juraschek
and
N. A.
Spaldin
, “
Orbital magnetic moments of phonons
,”
Phys. Rev. Mater.
3
,
064405
(
2019
).
7.
B.
Cheng
,
T.
Schumann
,
Y.
Wang
,
X.
Zhang
,
D.
Barbalas
,
S.
Stemmer
, and
N.
Armitage
, “
A large effective phonon magnetic moment in a Dirac semimetal
,”
Nano Lett.
20
,
5991
5996
(
2020
).
8.
Y.
Ren
,
C.
Xiao
,
D.
Saparov
, and
Q.
Niu
, “
Phonon magnetic moment from electronic topological magnetization
,”
Phys. Rev. Lett.
127
,
186403
(
2021
).
9.
X.
Chen
,
X.
Lu
,
S.
Dubey
,
Q.
Yao
,
S.
Liu
,
X.
Wang
,
Q.
Xiong
,
L.
Zhang
, and
A.
Srivastava
, “
Entanglement of single-photons and chiral phonons in atomically thin WSe2
,”
Nat. Phys.
15
,
221
227
(
2019
).
10.
Z.
Li
,
T.
Wang
,
C.
Jin
,
Z.
Lu
,
Z.
Lian
,
Y.
Meng
,
M.
Blei
,
M.
Gao
,
T.
Taniguchi
,
K.
Watanabe
et al, “
Momentum-dark intervalley exciton in monolayer tungsten diselenide brightened via chiral phonon
,”
ACS Nano
13
,
14107
14113
(
2019
).
11.
M.
He
,
P.
Rivera
,
D.
Van Tuan
,
N. P.
Wilson
,
M.
Yang
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Yan
,
D. G.
Mandrus
,
H.
Yu
et al, “
Valley phonons and exciton complexes in a monolayer semiconductor
,”
Nat. Commun.
11
,
618
(
2020
).
12.
X.
Liu
,
J.
Yi
,
S.
Yang
,
E.-C.
Lin
,
Y.-J.
Zhang
,
P.
Zhang
,
J.-F.
Li
,
Y.
Wang
,
Y.-H.
Lee
,
Z.-Q.
Tian
et al, “
Nonlinear valley phonon scattering under the strong coupling regime
,”
Nat. Mater.
20
,
1210
1215
(
2021
).
13.
H.
Chen
,
W.
Wu
,
J.
Zhu
,
S. A.
Yang
, and
L.
Zhang
, “
Propagating chiral phonons in three-dimensional materials
,”
Nano Lett.
21
,
3060
3065
(
2021
).
14.
H.
Chen
,
W.
Wu
,
J.
Zhu
,
Z.
Yang
,
W.
Gong
,
W.
Gao
,
S. A.
Yang
, and
L.
Zhang
, “
Chiral phonon diode effect in chiral crystals
,”
Nano Lett.
22
,
1688
1693
(
2022
).
15.
O.
Bistoni
,
F.
Mauri
, and
M.
Calandra
, “
Intrinsic vibrational angular momentum from nonadiabatic effects in noncollinear magnetic molecules
,”
Phys. Rev. Lett.
126
,
225703
(
2021
).
16.
N.
Suri
,
C.
Wang
,
Y.
Zhang
, and
D.
Xiao
, “
Chiral phonons in moiré superlattices
,”
Nano Lett.
21
,
10026
10031
(
2021
).
17.
X.
Li
,
C.
Xia
,
Y.
Pan
,
M.
Gao
,
H.
Chen
, and
L.
Zhang
, “
Topological chiral phonons along the line defect of intralayer heterojunctions
,”
Phys. Rev. B
104
,
054103
(
2021
).
18.
J.
Sonntag
,
S.
Reichardt
,
B.
Beschoten
, and
C.
Stampfer
, “
Electrical control over phonon polarization in strained graphene
,”
Nano Lett.
21
,
2898
2904
(
2021
).
19.
T.
Zhang
and
S.
Murakami
, “
Chiral phonons and pseudoangular momentum in nonsymmorphic systems
,”
Phys. Rev. Res.
4
,
L012024
(
2022
).
20.
Q.
Wang
,
S.
Li
,
J.
Zhu
,
H.
Chen
,
W.
Wu
,
W.
Gao
,
L.
Zhang
, and
S. A.
Yang
, “
Chiral phonons in lattices with C4 symmetry
,”
Phys. Rev. B
105
,
104301
(
2022
).
21.
W. J.
Choi
,
K.
Yano
,
M.
Cha
,
F. M.
Colombari
,
J.-Y.
Kim
,
Y.
Wang
,
S. H.
Lee
,
K.
Sun
,
J. M.
Kruger
,
A. F.
de Moura
et al, “
Chiral phonons in microcrystals and nanofibrils of biomolecules
,”
Nat. Photonics
16
,
366
373
(
2022
).
22.
K.
Kim
,
E.
Vetter
,
L.
Yan
,
C.
Yang
,
Z.
Wang
,
R.
Sun
,
Y.
Yang
,
A. H.
Comstock
,
X.
Li
,
J.
Zhou
et al, “
Chiral-phonon-activated spin Seebeck effect
,”
Nat. Mater.
22
,
322
328
(
2023
).
23.
J.
Cui
,
E. V.
Boström
,
M.
Ozerov
,
F.
Wu
,
Q.
Jiang
,
J.-H.
Chu
,
C.
Li
,
F.
Liu
,
X.
Xu
,
A.
Rubio
et al, “
Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet
,”
Nat. Commun.
14
,
3396
(
2023
).
24.
J.
Luo
,
T.
Lin
,
J.
Zhang
,
X.
Chen
,
E. R.
Blackert
,
R.
Xu
,
B. I.
Yakobson
, and
H.
Zhu
, “
Large effective magnetic fields from chiral phonons in rare-earth halides
,”
Science
382
,
698
702
(
2023
).
25.
S.
Tian
,
T.
Wu
,
S.
Hu
,
D.
Ma
, and
L.
Zhang
, “
Boosting phonon transport across AlN/SiC interface by fast annealing amorphous layers
,”
Appl. Phys. Lett.
124
,
042202
(
2024
).
26.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
,
14956
(
2017
).
27.
C.
Cui
,
W.-J.
Hu
,
X.
Yan
,
C.
Addiego
,
W.
Gao
,
Y.
Wang
,
Z.
Wang
,
L.
Li
,
Y.
Cheng
,
P.
Li
et al, “
Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3
,”
Nano Lett.
18
,
1253
1258
(
2018
).
28.
F.
Xue
,
W.
Hu
,
K.-C.
Lee
,
L.-S.
Lu
,
J.
Zhang
,
H.-L.
Tang
,
A.
Han
,
W.-T.
Hsu
,
S.
Tu
,
W.-H.
Chang
et al, “
Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit
,”
Adv. Funct. Mater.
28
,
1803738
(
2018
).
29.
M.
Hamada
,
E.
Minamitani
,
M.
Hirayama
, and
S.
Murakami
, “
Phonon angular momentum induced by the temperature gradient
,”
Phys. Rev. Lett.
121
,
175301
(
2018
).
30.
M.
Soleimani
and
M.
Pourfath
, “
Ferroelectricity and phase transitions in In2Se3 van der Waals material
,”
Nanoscale
12
,
22688
22697
(
2020
).
31.
Y.
Kato
,
R.
Myers
,
A.
Gossard
, and
D.
Awschalom
, “
Current-induced spin polarization in strained semiconductors
,”
Phys. Rev. Lett.
93
,
176601
(
2004
).
32.
N.
Stern
,
S.
Ghosh
,
G.
Xiang
,
M.
Zhu
,
N.
Samarth
, and
D.
Awschalom
, “
Current-induced polarization and the spin Hall effect at room temperature
,”
Phys. Rev. Lett.
97
,
126603
(
2006
).
33.
T.
Qin
,
J.
Zhou
, and
J.
Shi
, “
Berry curvature and the phonon Hall effect
,”
Phys. Rev. B
86
,
104305
(
2012
).
34.
L.
Zhang
, “
Berry curvature and various thermal Hall effects
,”
New J. Phys.
18
,
103039
(
2016
).
35.
K.
Sun
,
Z.
Gao
, and
J.-S.
Wang
, “
Phonon Hall effect with first-principles calculations
,”
Phys. Rev. B
103
,
214301
(
2021
).
36.
T.
Uehara
,
T.
Ohtsuki
,
M.
Udagawa
,
S.
Nakatsuji
, and
Y.
Machida
, “
Phonon thermal Hall effect in a metallic spin ice
,”
Nat. Commun.
13
,
4604
(
2022
).

Supplementary Material

You do not currently have access to this content.