The electronic and transport properties of aluminum-graphene composite materials were investigated using the ab initio plane wave density functional theory. The interfacial structure is reported for several configurations. In some cases, the face-centered aluminum (111) surface relaxes in a nearly ideal registry with graphene, resulting in a remarkably continuous interface structure. The Kubo–Greenwood formula and space-projected conductivity were employed to study electronic conduction in aluminum single- and double-layer graphene-aluminum composite models. The electronic density of states at the Fermi level is enhanced by the graphene for certain aluminum–graphene interfaces, thus improving electronic conductivity. In double-layer graphene composites, conductivity varies non-monotonically with temperature, showing an increase between 300 and 400 K at short aluminum-graphene distances, unlike the consistent decrease in single-layer composites.

1.
A.
Nittala
,
J.
Smith
,
B.
Gwalani
,
J.
Silverstein
,
F.
Kraft
, and
K.
Kappagantula
, “
Simultaneously improved electrical and mechanical performance of hot-extruded bulk scale aluminum-graphene wires
,”
Mater. Sci. Eng. B
293
,
116452
(
2023
).
2.
K. S.
Kappagantula
,
J. A.
Smith
,
A. K.
Nittala
, and
F. F.
Kraft
, “
Macro copper-graphene composites with enhanced electrical conductivity
,”
J. Alloys Compd.
894
,
162477
(
2022
).
3.
B.
Gwalani
,
X.
Li
,
A.
Nittala
,
W.
Choi
,
M.
Reza-E-Rabby
,
J.
Atehortua
,
A.
Bhattacharjee
,
M.
Pole
,
J.
Silverstein
,
M.
Song
, and
K.
Kappagantula
, “
Unprecedented electrical performance of friction-extruded copper-graphene composites
,”
Mater. Des.
237
,
112555
(
2023
).
4.
A. K.
Sharma
,
R.
Bhandari
, and
C.
Pinca-Bretotean
, “
A systematic overview on fabrication aspects and methods of aluminum metal matrix composites
,”
Mater. Today: Proc.
45
,
4133
4138
(
2021
).
5.
K.
Jiju
,
S.
Gurusamy
, and
S.
Prakash
, “
Study on preparation of Al-SiC metal matrix composites using powder metallurgy technique and its mechanical properties
,”
Mater. Today: Proc.
27
,
1843
1847
(
2020
).
6.
X.
Sauvage
,
E. V.
Bobruk
,
M. Y.
Murashkin
,
Y.
Nasedkina
,
N. A.
Enikeev
, and
R. Z.
Valiev
, “
Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys
,”
Acta Mater.
98
,
355
(
2015
).
7.
J.
Tokutomi
,
T.
Uemura
,
S.
Sugiyama
,
J.
Shiomi
, and
J.
Yanagimoto
, “
Hot extrusion to manufacture the metal matrix composite of carbon nanotube and aluminum with excellent electrical conductivities and mechanical properties
,”
CIRP Ann. Manuf. Technol.
64
,
257
260
(
2015
).
8.
F. A.
Chyada
,
A. R.
Jabur
, and
H. A.
Alwan
, “
Effect addition of graphene on electrical conductivity and tensile strength for recycled electric power transmission wires
,”
Energy Procedia
119
,
121
130
(
2017
).
9.
L.
Brown
,
P.
Joyce
,
D.
Forrest
, and
L.
Salamanca-Riba
, “
Physical and mechanical characterization of a nanocarbon infused aluminum-matrix composite
,”
Mater. Perform. Charact.
3
,
65
80
(
2014
).
10.
A. M.
Ali
,
M. Z.
Omar
,
H.
Hashim
,
M. S.
Salleh
, and
I. F.
Mohamed
, “
Recent development in graphene-reinforced aluminium matrix composite: A review
,”
Rev. Adv. Mater. Sci.
60
,
801
817
(
2021
).
11.
X.
Zhang
and
S.
Wang
, “
Interfacial strengthening of graphene/aluminum composites through point defects: A first-principles study
,”
Nanomaterials
11
,
738
(
2021
).
12.
D.-Y.
Kim
and
H.-J.
Choi
, “
Recent developments towards commercialization of metal matrix composites
,”
Materials
13
,
2828
(
2020
).
13.
M. S.
Ayar
,
P. M.
George
, and
R. R.
Patel
, “
Advanced research progresses in aluminium metal matrix composites: An overview
,”
AIP Conf. Proc.
2317
,
020026
(
2021
).
14.
K.
Nepal
,
C.
Ugwumadu
,
A.
Gautam
,
K.
Kappagantula
, and
D. A.
Drabold
, “
Electronic conductivity in metal-graphene composites: The role of disordered carbon structures, defects, and impurities
,”
J. Phys. Mater.
7
,
025003
(
2024
).
15.
M.
Cao
,
Y.
Luo
,
Y.
Xie
,
Z.
Tan
,
G.
Fan
,
Q.
Guo
,
Y.
Su
,
Z.
Li
, and
D.-B.
Xiong
, “
The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix
,”
Adv. Mater. Interfaces
6
,
1900468
(
2019
).
16.
W.
Wang
,
Y.
Liu
,
T.
Wang
,
K.
Sheng
, and
B.
Yu
, “
Graphene/Cu (111) interface study: The density functional theory calculations
,” in
International Conference on Electronics, Communications and Control (ICECC)
(
IEEE
,
2011
), pp.
265
268
.
17.
K. N.
Subedi
,
K.
Nepal
,
C.
Ugwumadu
,
K.
Kappagantula
, and
D. A.
Drabold
, “
Electronic transport in copper-graphene composites
,”
Appl. Phys. Lett.
122
,
031903
(
2023
).
18.
J.-M.
Zhang
,
F.
Ma
, and
K.-W.
Xu
, “
Calculation of the surface energy of FCC metals with modified embedded-atom method
,”
Appl. Surf. Sci.
229
,
34
42
(
2004
).
19.
Y.
Wang
,
M.
Li
,
P.
Peng
,
H.
Gao
,
J.
Wang
, and
B.
Sun
, “
Preferred orientation at the Al/graphene interface: First-principles calculations and experimental observation
,”
J. Alloys Compd.
900
,
163304
(
2022
).
20.
N. A.
Lanzillo
,
J. B.
Thomas
,
B.
Watson
,
M.
Washington
, and
S. K.
Nayak
, “
Pressure-enabled phonon engineering in metals
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
8712
8716
(
2014
).
21.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
22.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
1396
(
1997
).
24.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
25.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
26.
Y.
Qi
,
L. G.
Hector
,
N.
Ooi
, and
J. B.
Adams
, “
A first principles study of adhesion and adhesive transfer at Al(111)/graphite(0001)
,”
Surf. Sci.
581
,
155
168
(
2005
).
27.
W.
Lee
,
S.
Jang
,
M. J.
Kim
, and
J. M.
Myoung
, “
Interfacial interactions and dispersion relations in carbon-aluminium nanocomposite systems
,”
Nanotechnology
19
,
285701
(
2008
).
28.
Y.
Qi
and
L. G.
Hector
, “
Adhesion and adhesive transfer at aluminum/diamond interfaces: A first-principles study
,”
Phys. Rev. B
69
,
235401
(
2004
).
29.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
30.
N. K.
Hindley
, “
Random phase model of amorphous semiconductors I. Transport and optical properties
,”
J. Non-Cryst. Solids
5
,
17
30
(
1970
).
31.
N. K.
Hindley
, “
Random phase model of amorphous semiconductors II. Hot electrons
,”
J. Non-Cryst. Solids
5
,
31
40
(
1970
).
32.
L.
Friedman
and
N. F.
Mott
, “
The hall effect near the metal-insulator transition
,” in
Sir Nevill Mott – 65 Years in Physics
(
World Scientific
,
1995
), pp.
529
534
.
33.
L.
Friedman
, “
Hall conductivity of amorphous semiconductors in the random phase model
,”
J. Non-Cryst. Solids
6
,
329
341
(
1971
).
34.
N. F.
Mott
and
E. A.
Davis
,
Electronic Processes in Non-Crystalline Materials
, 2nd ed. (
Clarendon/Oxford University Press
,
Oxford, New York
,
1979
), Chap. 2, pp.
6
58
.
35.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
36.
D. A.
Greenwood
, “
The Boltzmann equation in the theory of electrical conduction in metals
,”
Proc. Phys. Soc.
71
,
585
596
(
1958
).
37.
L. L.
Moseley
and
T.
Lukes
, “
A simplified derivation of the Kubo-Greenwood formula
,”
Am. J. Phys.
46
,
676
677
(
1978
).
38.
A.
Samal
,
A. K.
Kushwaha
,
D.
Das
,
M. R.
Sahoo
,
N. A.
Lanzillo
, and
S. K.
Nayak
, “
Thermal and electrical conductivity of copper-graphene heterosystem: An effect of strain and thickness
,”
Adv. Eng. Mater.
25
,
2201192
(
2023
).
39.
P.
Liu
,
J.
Xie
,
A.
Wang
,
D.
Ma
, and
Z.
Mao
, “
First-principles prediction of enhancing graphene/Al interface bonding strength by graphene doping strategy
,”
Appl. Surf. Sci.
517
,
146040
(
2020
).
40.
Y.
Mei
,
B.
Ju
,
W.
Yang
,
Z.
Xiu
,
B.
Zhao
, and
G.
Wu
, “
First-principles prediction of enhancing graphene-Al interface bonding by Si-doping
,”
Appl. Compos. Mater.
28
,
1845
(
2021
).
41.
K. N.
Subedi
,
K.
Kappagantula
,
F.
Kraft
,
A.
Nittala
, and
D. A.
Drabold
, “
Electrical conduction processes in aluminum: Defects and phonons
,”
Phys. Rev. B
105
,
104114
(
2022
).
42.
K. N.
Subedi
,
K.
Prasai
,
M. N.
Kozicki
, and
D. A.
Drabold
, “
Structural origins of electronic conduction in amorphous copper-doped alumina
,”
Phys. Rev. Mater.
3
,
065605
(
2019
).
43.
K. N.
Subedi
,
K.
Prasai
, and
D. A.
Drabold
, “
Space-projected conductivity and spectral properties of the conduction matrix
,”
Phys. Status Solidi B
258
,
2000438
(
2020
).
44.
C.
Ugwumadu
,
K.
Nepal
,
R.
Thapa
,
Y.
Lee
,
Y.
Al Majali
,
J.
Trembly
, and
D.
Drabold
, “
Simulation of multi-shell fullerenes using machine-learning Gaussian approximation potential
,”
Carbon Trends
10
,
100239
(
2023
).
45.
C.
Ugwumadu
,
R.
Thapa
,
Y.
Al-Majali
,
J.
Trembly
, and
D. A.
Drabold
, “
Formation of amorphous carbon multi-walled nanotubes from random initial configurations
,”
Phys. Status Solidi B
260
,
2200527
(
2023
).
46.
C.
Ugwumadu
,
R.
Thapa
,
K.
Nepal
, and
D. A.
Drabold
, “
Atomistic nature of amorphous graphite
,”
Phys. Chem. Glasses
64
,
16
22
(
2023
).
47.
R.
Thapa
,
C.
Ugwumadu
,
K.
Nepal
,
J.
Trembly
, and
D. A.
Drabold
, “
Ab initio simulation of amorphous graphite
,”
Phys. Rev. Lett.
128
,
236402
(
2022
).
48.
S.
Ono
, “
C-axis resistivity of graphite in connection with stacking faults
,”
J. Phys. Soc. Jpn.
40
,
498
504
(
1976
).
49.
N.
Iwashita
,
H.
Imagawa
, and
W.
Nishiumi
, “
Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products
,”
Carbon
61
,
602
608
(
2013
).
50.
S.
Bapat
, “
Thermal conductivity and electrical resistivity of two types of ATJ-S graphite to 3500° K
,”
Carbon
11
,
511
514
(
1973
).
51.
K.
Matsubara
,
K.
Sugihara
, and
T.
Tsuzuku
, “
Electrical resistance in the c direction of graphite
,”
Phys. Rev. B
41
,
969
974
(
1990
).

Supplementary Material

You do not currently have access to this content.