We report on the demonstration of β-Ga2O3 MOSFETs fabricated on 1-in. bulk substrates using metalorganic vapor phase epitaxy (MOVPE) with disilane (Si2H6) as the silicon precursor. Sheet charge uniformity of the as-grown films was measured via Hall and ranged from 5.9–6.7 × 1012 cm−2 with a uniform Hall mobility of 125–129 cm2/V s across the sample. MOSFET devices with a source-drain length of 5.1 μm were measured across the wafer and had a minimum on-resistance (RON) of 47.87 Ω mm with a maximum on-current (ION) of 165 mA/mm. For these same devices, the on-current (ION) and pinch-off voltage (VP) uniformity across the wafer were 137 ± 12 mA/mm and −27.3 ± 7.3 V, respectively. Devices showed low reverse leakage current until catastrophic breakdown occurred, with measured breakdown voltages (VBR) of up to 2.15 kV. This work provides valuable insights into understanding the growth, fabrication, and characterization processes for β-Ga2O3 FETs on full wafer-scale substrates. It also projects the promise of developing lateral β-Ga2O3 FETs with high current-carrying capabilities and breakdown voltages, especially on substrates of 1 in. or larger.

1.
A. J.
Green
,
J.
Speck
,
G.
Xing
,
P.
Moens
,
F.
Allerstam
,
K.
Gumaelius
,
T.
Neyer
,
A.
Arias-Purdue
,
V.
Mehrotra
,
A.
Kuramata
,
K.
Sasaki
,
S.
Watanabe
,
K.
Koshi
,
J.
Blevins
,
O.
Bierwagen
,
S.
Krishnamoorthy
,
K.
Leedy
,
A. R.
Arehart
,
A. T.
Neal
,
S.
Mou
,
S. A.
Ringel
,
A.
Kumar
,
A.
Sharma
,
K.
Ghosh
,
U.
Singisetti
,
W.
Li
,
K.
Chabak
,
K.
Liddy
,
A.
Islam
,
S.
Rajan
,
S.
Graham
,
S.
Choi
,
Z.
Cheng
, and
M.
Higashiwaki
, “
β-Gallium oxide power electronics
,”
APL Mater.
10
(
2
),
029201
(
2022
).
2.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M.
Hoi Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics
,”
Appl. Phys. Lett.
103
(
12
),
123511
(
2013
).
3.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
β-Ga2O3 lateral high-permittivity dielectric superjunction Schottky barrier diode with 1.34 GW/cm2 power figure of merit
,”
IEEE Electron Device Lett.
43
(
12
),
2037
2040
(
2022
).
4.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
, “
6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC
,”
IEEE Electron Device Lett.
43
(
5
),
765
768
(
2022
).
5.
J. D.
Blevins
,
K.
Stevens
,
A.
Lindsey
,
G.
Foundos
, and
L.
Sande
, “
Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates
,”
IEEE Trans. Semicond. Manuf.
32
(
4
),
466
472
(
2019
).
6.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
,
D.
Klimm
, and
M.
Bickermann
, “
On the bulk β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Cryst. Growth
404
,
184
191
(
2014
).
7.
K.
Hoshikawa
,
E.
Ohba
,
T.
Kobayashi
,
J.
Yanagisawa
,
C.
Miyagawa
, and
Y.
Nakamura
, “
Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air
,”
J. Cryst. Growth
447
,
36
41
(
2016
).
8.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
, “
Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method
,”
Jpn. J. Appl. Phys., Part 1
47
(
11R
),
8506
(
2008
).
9.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys., Part 1
55
(
12
),
1202A2
(
2016
).
10.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V
,”
IEEE Electron Device Lett.
37
(
2
),
212
215
(
2016
).
11.
K.
Tetzner
,
E.
Bahat Treidel
,
O.
Hilt
,
A.
Popp
,
S.
Bin Anooz
,
G.
Wagner
,
A.
Thies
,
K.
Ickert
,
H.
Gargouri
, and
J.
Würfl
, “
Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit
,”
IEEE Electron Device Lett.
40
(
9
),
1503
1506
(
2019
).
12.
C. N.
Saha
,
A.
Vaidya
,
A.
Bhuiyan
,
L.
Meng
,
S.
Sharma
,
H.
Zhao
, and
U.
Singisetti
, “
Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX
,”
Appl. Phys. Lett.
122
(
18
),
182106
(
2023
).
13.
S.
Sharma
,
L.
Meng
,
A.
Bhuiyan
,
Z.
Feng
,
D.
Eason
,
H.
Zhao
, and
U.
Singisetti
, “
Vacuum annealed β-Ga2O3 recess channel MOSFETs with 8.56 kV breakdown voltage
,”
IEEE Electron Device Lett.
43
(
12
),
2029
2032
(
2022
).
14.
Y.
Lv
,
H.
Liu
,
X.
Zhou
,
Y.
Wang
,
X.
Song
,
Y.
Cai
,
Q.
Yan
,
C.
Wang
,
S.
Liang
,
J.
Zhang
,
Z.
Feng
,
H.
Zhou
,
S.
Cai
, and
Y.
Hao
, “
Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2
,”
IEEE Electron Device Lett.
41
(
4
),
537
540
(
2020
).
15.
N. K.
Kalarickal
,
Z.
Xia
,
H.-L.
Huang
,
W.
Moore
,
Y.
Liu
,
M.
Brenner
,
J.
Hwang
, and
S.
Rajan
, “
β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm
,”
IEEE Electron Device Lett.
42
(
6
),
899
902
(
2021
).
16.
A. J.
Green
,
K. D.
Chabak
,
E. R.
Heller
,
R. C.
Fitch
,
M.
Baldini
,
A.
Fiedler
,
K.
Irmscher
,
G.
Wagner
,
Z.
Galazka
,
S. E.
Tetlak
,
A.
Crespo
,
K.
Leedy
, and
G. H.
Jessen
, “
3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
37
(
7
),
902
905
(
2016
).
17.
A.
Bhattacharyya
,
S.
Roy
,
P.
Ranga
,
D.
Shoemaker
,
Y.
Song
,
J. S.
Lundh
,
S.
Choi
, and
S.
Krishnamoorthy
, “
130 mA mm −1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown Ohmic contacts
,”
Appl. Phys. Express
14
(
7
),
076502
(
2021
).
18.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
F.
Alema
,
G.
Seryogin
,
A.
Osinsky
, and
S.
Krishnamoorthy
, “
Multi-kV class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 MW/cm2
,”
IEEE Electron Device Lett.
42
(
9
),
1272
1275
(
2021
).
19.
A.
Bhattacharyya
,
S.
Sharma
,
F.
Alema
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
G.
Seryogin
,
A.
Osinsky
,
U.
Singisetti
, and
S.
Krishnamoorthy
, “
4.4 kV β-Ga2O3 MESFETs with power figure of merit exceeding 100 MW cm−2
,”
Appl. Phys. Express
15
(
6
),
061001
(
2022
).
20.
A.
Bhattacharyya
,
S.
Roy
,
P.
Ranga
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
High-mobility tri-gate β-Ga2O3 MESFETs with a power figure of merit over 0.9 GW/cm2
,”
IEEE Electron Device Lett.
43
(
10
),
1637
1640
(
2022
).
21.
H.
Liu
,
Y.
Wang
,
Y.
Lv
,
S.
Han
,
T.
Han
,
S.
Dun
,
H.
Guo
,
A.
Bu
, and
Z.
Feng
, “
10-kV lateral β-Ga2O3 MESFETs with B ion implanted planar isolation
,”
IEEE Electron Device Lett.
44
(
7
),
1048
1051
(
2023
).
22.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
, and
Y.
Yamaoka
, in
Gallium Oxide: Materials Properties, Crystal Growth, and Devices
, edited by
M.
Higashiwaki
and
S.
Fujita
(
Springer International Publishing
,
Cham
,
2020
), pp.
57
75
.
23.
A.
Bhattacharyya
,
C.
Peterson
,
T.
Itoh
,
S.
Roy
,
J.
Cooke
,
S.
Rebollo
,
P.
Ranga
,
B.
Sensale-Rodriguez
, and
S.
Krishnamoorthy
, “
Enhancing the electron mobility in Si-doped (010) β-Ga2O3 films with low-temperature buffer layers
,”
APL Mater.
11
(
2
),
021110
(
2023
).
24.
F.
Alema
,
Y.
Zhang
,
A.
Osinsky
,
N.
Valente
,
A.
Mauze
,
T.
Itoh
, and
J. S.
Speck
, “
Low temperature electron mobility exceeding 104 cm2/V s in MOCVD grown β-Ga2O3
,”
APL Mater.
7
(
12
),
121110
(
2019
).
25.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
J.
Ogle
,
L.
Whittaker-Brooks
, and
S.
Krishnamoorthy
, “
Low temperature homoepitaxy of (010) β-Ga2O3 by metalorganic vapor phase epitaxy: Expanding the growth window
,”
Appl. Phys. Lett.
117
(
14
),
142102
(
2020
).
26.
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
(
25
),
250601
(
2019
).
27.
G.
Seryogin
,
F.
Alema
,
N.
Valente
,
H.
Fu
,
E.
Steinbrunner
,
A. T.
Neal
,
S.
Mou
,
A.
Fine
, and
A.
Osinsky
, “
MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor
,”
Appl. Phys. Lett.
117
(
26
),
262101
(
2020
).
28.
Y.
Zhang
,
F.
Alema
,
A.
Mauze
,
O. S.
Koksaldi
,
R.
Miller
,
A.
Osinsky
, and
J. S.
Speck
, “
MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature
,”
APL Mater.
7
(
2
),
022506
(
2019
).
29.
Z.
Feng
,
A.
Bhuiyan
,
Z.
Xia
,
W.
Moore
,
Z.
Chen
,
J. F.
McGlone
,
D. R.
Daughton
,
A. R.
Arehart
,
S. A.
Ringel
,
S.
Rajan
, and
H.
Zhao
, “
Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) β-Ga2O3
,”
Phys. Rapid Res. Ltrs.
14
(
8
),
2000145
(
2020
).
30.
S.
Bin Anooz
,
R.
Grüneberg
,
C.
Wouters
,
R.
Schewski
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
Z.
Galazka
,
W.
Miller
,
G.
Wagner
,
J.
Schwarzkopf
, and
A.
Popp
, “
Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE
,”
Appl. Phys. Lett.
116
(
18
),
182106
(
2020
).
31.
T.-S.
Chou
,
P.
Seyidov
,
S. B.
Anooz
,
R.
Grüneberg
,
J.
Rehm
,
T. T. V.
Tran
,
A.
Fiedler
,
K.
Tetzner
,
Z.
Galazka
,
M.
Albrecht
, and
A.
Popp
, “
High-mobility 4 μm MOVPE-grown (100) β-Ga2O3 film by parasitic particles suppression
,”
Jpn. J. Appl. Phys., Part 1
62
(
SF
),
SF1004
(
2023
).
32.
L.
Meng
,
Z.
Feng
,
A.
Bhuiyan
, and
H.
Zhao
, “
High-mobility MOCVD β-Ga2O3 epitaxy with fast growth rate using trimethylgallium
,”
Cryst. Growth Des.
22
(
6
),
3896
3904
(
2022
).
33.
D.
Chettri
,
G.
Mainali
,
C.
Amruth
,
V.
Khandelwal
,
S.
Yuvaraja
,
N.
Xiao
,
X.
Tang
,
D.
Baran
, and
X.
Li
, “
β-Ga2O3 pseudo-CMOS monolithic inverters
,”
IEEE Trans. Electron Devices
70
(
10
),
5051
5056
(
2023
).
34.
J. H.
Purnell
,
R.
Walsh
, and
R. G. W.
Norrish
, “
The pyrolysis of monosilane
,”
Proc. R. Soc. London, Ser. A
293
(
1435
),
543
561
(
1966
).
35.
T. F.
Kuech
,
B. S.
Meyerson
, and
E.
Veuhoff
, “
Disilane: A new silicon doping source in metalorganic chemical vapor deposition of GaAs
,”
Appl. Phys. Lett.
44
(
10
),
986
988
(
1984
).
36.
L. B.
Rowland
,
K.
Doverspike
, and
D. K.
Gaskill
, “
Silicon doping of GaN using disilane
,”
Appl. Phys. Lett.
66
(
12
),
1495
1497
(
1995
).
37.
F.
Alema
,
C.
Peterson
,
A.
Bhattacharyya
,
S.
Roy
,
S.
Krishnamoorthy
, and
A.
Osinsky
, “
Low resistance Ohmic contact on epitaxial MOVPE grown β-Ga2O3 and β-(AlxGa1-x)2O3 films
,”
IEEE Electron Device Lett.
43
(
10
),
1649
1652
(
2022
).
38.
K.
Tetzner
,
A.
Thies
,
P.
Seyidov
,
T.-S.
Chou
,
J.
Rehm
,
I.
Ostermay
,
Z.
Galazka
,
A.
Fiedler
,
A.
Popp
,
J.
Würfl
, and
O.
Hilt
, “
Ge-ion implantation and activation in (100) β-Ga2O3 for Ohmic contact improvement using pulsed rapid thermal annealing
,”
J. Vac. Sci. Technol. A
41
(
4
),
043102
(
2023
).
39.
T.
Kamimura
,
K.
Sasaki
,
M.
Hoi Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions
,”
Appl. Phys. Lett.
104
(
19
),
192104
(
2014
).
40.
T.
Kamimura
,
D.
Krishnamurthy
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3 010) and its suppressed interface state density
,”
Jpn. J. Appl. Phys., Part 1
55
(
12
),
1202B5
(
2016
).
41.
M. A.
Bhuiyan
,
H.
Zhou
,
R.
Jiang
,
E. X.
Zhang
,
D. M.
Fleetwood
,
P. D.
Ye
, and
T.-P.
Ma
, “
Charge trapping in Al2O3/β-Ga2O3-based MOS capacitors
,”
IEEE Electron Device Lett.
39
(
7
),
1022
1025
(
2018
).
42.
A. E.
Islam
,
C.
Zhang
,
K.
DeLello
,
D. A.
Muller
,
K. D.
Leedy
,
S.
Ganguli
,
N. A.
Moser
,
R.
Kahler
,
J. C.
Williams
,
D. M.
Dryden
,
S.
Tetlak
,
K. J.
Liddy
,
A. J.
Green
, and
K. D.
Chabak
, “
Defect engineering at the Al2O3/(010) β-Ga2O3 interface via surface treatments and forming gas post-deposition anneals
,”
IEEE Trans. Electron Devices
69
(
10
),
5656
5663
(
2022
).
43.
H.
Zhou
,
S.
Alghmadi
,
M.
Si
,
G.
Qiu
, and
P. D.
Ye
, “
Al2O3/β-Ga2O3(-201) interface improvement through piranha pretreatment and postdeposition annealing
,”
IEEE Electron Device Lett.
37
(
11
),
1411
1414
(
2016
).
44.
S.
Roy
,
A. E.
Chmielewski
,
A.
Bhattacharyya
,
P.
Ranga
,
R.
Sun
,
M. A.
Scarpulla
,
N.
Alem
, and
S.
Krishnamoorthy
, “
In situ dielectric Al2O3/β-Ga2O3 interfaces grown using metal–organic chemical vapor deposition
,”
Adv. Elect. Mater.
7
(
11
),
2100333
(
2021
).
45.
J. P.
McCandless
,
C. A.
Gorsak
,
V.
Protasenko
,
D. G.
Schlom
,
M. O.
Thompson
,
H. G.
Xing
,
D.
Jena
, and
H. P.
Nair
, “
Accumulation and removal of Si impurities on β-Ga2O3 arising from ambient air exposure
,” arXiv:2312.06851 (
2023
).

Supplementary Material

You do not currently have access to this content.