The Boltzmann transport equation (BTE) based intrinsic carrier mobility estimation significantly improves accuracy, which is crucial for assessing the performances of the materials within the devices. Herein, we explore the highly anisotropic, semiconducting 2D transition metal trichalcogenide monolayers (TMTC) MX3 (M = Ti, Zr, Hf and X = S, Se) for their transport properties. Remarkably, the electron carrier mobility obtained by combining BTE with density functional theory (DFT) in TiS3 monolayer has reached ∼1400 cm2/V.s. This finding stands in stark contrast to the electron mobility of ∼104 cm2/V·s obtained using a formalism built on the effective mass approximation. The marked disparity in mobility estimation underscores the crucial role played by the BTE in elevating precision. Alongside, a pronounced anisotropy in carrier mobility has been observed in these monolayers, particularly concerning lattice directions and electron-to-hole carrier mobility. Overall, this study seeks to fill out the voids and focuses on accurate estimation of high carrier mobility in TMTC monolayers using DFT-BTE.

1.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
2.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
3.
Y.
Yoon
,
K.
Ganapathi
, and
S.
Salahuddin
, “
How good can monolayer MoS2 transistors Be?
,”
Nano Lett.
11
(
9
),
3768
3773
(
2011
).
4.
M. S.
Choi
,
D.
Qu
,
D.
Lee
,
X.
Liu
,
K.
Watanabe
,
T.
Taniguchi
, and
W. J.
Yoo
, “
Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics
,”
ACS Nano
8
(
9
),
9332
9340
(
2014
).
5.
A. B.
Kaul
, “
Two-dimensional layered materials: Structure, properties, and prospects for device applications
,”
J. Mater. Res.
29
(
3
),
348
361
(
2014
).
6.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
, “
Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal
,”
Nat. Mater.
3
(
6
),
404
409
(
2004
).
7.
K. K. H.
Smithe
,
C. D.
English
,
S. V.
Suryavanshi
, and
E.
Pop
, “
Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices
,”
2D Mater.
4
(
1
),
011009
(
2016
).
8.
N.
Huo
,
Y.
Yang
,
Y.-N.
Wu
,
X.-G.
Zhang
,
S. T.
Pantelides
, and
G.
Konstantatos
, “
High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression
,”
Nanoscale
10
(
31
),
15071
15077
(
2018
).
9.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D. E.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5
),
666
669
(
2004
).
10.
X.
Wang
,
A. M.
Jones
,
K. L.
Seyler
,
V.
Tran
,
Y.
Jia
,
H.
Zhao
,
H.
Wang
,
L.
Yang
,
X.
Xu
, and
F.
Xia
, “
Highly anisotropic and robust excitons in monolayer black phosphorus
,”
Nat. Nanotechnol.
10
(
6
),
517
521
(
2015
).
11.
Y.
Zhang
,
B.
Shang
,
L.
Li
, and
J.
Lei
, “
Coupling effects of strain on structural transformation and bandgap engineering in SnS monolayer
,”
RSC Adv.
7
(
48
),
30327
30333
(
2017
).
12.
S.
Zhang
,
N.
Wang
,
S.
Liu
,
S.
Huang
,
W.
Zhou
,
B.
Cai
,
M.
Xie
,
Q.
Yang
,
X.
Chen
, and
H.
Zeng
, “
Two-dimensional GeS with tunable electronic properties via external electric field and strain
,”
Nanotechnology
27
(
27
),
274001
(
2016
).
13.
L.
Vannucci
,
U.
Petralanda
,
A.
Rasmussen
,
T.
Olsen
, and
K. S.
Thygesen
, “
Anisotropic properties of monolayer 2D materials: An overview from the C2DB database
,”
J. Appl. Phys.
128
(
10
),
105101
(
2020
).
14.
P.
Zhao
,
J.
Li
,
W.
Wei
,
Q.
Sun
,
H.
Jin
,
B.
Huang
, and
Y.
Dai
, “
Giant anisotropic photogalvanic effect in a flexible AsSb monolayer with ultrahigh carrier mobility
,”
Phys. Chem. Chem. Phys.
19
(
40
),
27233
27239
(
2017
).
15.
F.
Xiong
,
J.
Zhang
,
Z.
Zhu
,
X.
Yuan
, and
S.
Qin
, “
Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer
,”
J. Opt.
19
(
7
),
075002
(
2017
).
16.
S.
Tyagi
,
P. C.
Rout
, and
U.
Schwingenschlögl
, “
High-performance junction-free field-effect transistor based on blue phosphorene
,”
npj 2D Mater. Appl.
6
(
1
),
86
(
2022
).
17.
Y.
Jin
,
X.
Li
, and
J.
Yang
, “
Single layer of MX3 (M=Ti, Zr; X=S, Se, Te): new platform for nano-electronics and optics
,”
Phys. Chem. Chem. Phys.
17
(
28
),
18665
18669
(
2015
).
18.
J. O.
Island
,
R.
Biele
,
M.
Barawi
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
H. S. J.
Van Der Zant
,
I. J.
Ferrer
,
R.
D'Agosta
, and
A.
Castellanos-Gomez
, “
Titanium trisulfide (TiS3): A 2D semiconductor with quasi-1D optical and electronic properties
,”
Sci. Rep.
6
(
1
),
22214
(
2016
).
19.
J.
Wu
,
D.
Wang
,
H.
Liu
,
W.-M.
Lau
, and
L.-M.
Liu
, “
An ab initio study of TiS3: A promising electrode material for rechargeable Li and Na ion batteries
,”
RSC Adv.
5
(
28
),
21455
21463
(
2015
).
20.
J. O.
Island
,
A. J.
Molina-Mendoza
,
M.
Barawi
,
R.
Biele
,
E.
Flores
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
H. S.
van der Zant
,
I. J.
Ferrer
, and
A.
Castellanos-Gomez
, “
Electronics and optoelectronics of quasi-one dimensional layered transition metal trichalcogenides
,”
2D Mater.
4
(
2
),
022003
(
2017
).
21.
T.
Wu
,
K.
Deng
,
W.
Deng
, and
R.
Lu
, “
Diverse carrier mobility of monolayer BNCx: A combined density functional theory and Boltzmann transport theory study
,”
J. Phys.: Condens. Matter
29
(
45
),
455305
(
2017
).
22.
J.
Dai
and
X. C.
Zeng
, “
Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility
,”
Angew. Chem., Int. Ed.
54
(
26
),
7572
7576
(
2015
).
23.
H.
Shu
, “
Highly-anisotropic carrier transport and optical properties of two-dimensional titanium trisulfide Electronic materials
,”
J. Mater. Sci.
57
(
5
),
3486
3496
(
2022
).
24.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
(
1965
).
25.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
26.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
27.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
(
20
),
14251
(
1994
).
28.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
29.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
(
1
),
558
(
1993
).
30.
P. E.
Blochl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
(
1994
).
31.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
(
1999
).
32.
M.
Abdulsalam
and
D. P.
Joubert
, “
Electronic and optical properties of MX3 (M = Ti, Zr and Hf; X = S, Se) structures: A first principles insight
,”
Phys. Status Solidi B
253
(
5
),
868
874
(
2016
).
33.
V.
Ongun Özçelik
,
J. G.
Azadani
,
C.
Yang
,
S. J.
Koester
, and
T.
Low
, “
Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching
,”
Phys. Rev. B
94
(
3
),
35125
(
2016
).
34.
F.
Lévy
and
H.
Berger
, “
Single crystals of transition metal trichalcogenides
,”
J. Cryst. Growth
61
(
1
),
61
68
(
1983
).
35.
Q.
Zhao
,
Y.
Guo
,
Y.
Zhou
,
Z.
Yao
,
Z.
Ren
,
J.
Bai
, and
X.
Xu
, “
Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3(M = Zr, Hf; X = S, Se) and dichalcogenides MX2(M = Tc, Re; X=S, Se) for solar applications
,”
Nanoscale
10
(
7
),
3547
3555
(
2018
).
36.
L.
Tang
,
M.
Long
,
D.
Wang
, and
Z.
Shuai
, “
The role of acoustic phonon scattering in charge transport in organic semiconductors: A first-principles deformation-potential study
,”
Sci. China Ser. B-Chem.
52
(
10
),
1646
1652
(
2009
).
37.
J.
Bardeen
and
W.
Shockley
, “
Deformation potentials and mobilities in non-polar crystals
,”
Phys. Rev.
80
(
1
),
72
80
(
1950
).
38.
Y.
Cai
,
G.
Zhang
, and
Y. W.
Zhang
, “
Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons
,”
J. Am. Chem. Soc.
136
(
17
),
6269
6275
(
2014
).
39.
S. I.
Takagi
,
J. L.
Hoyt
,
J. J.
Welser
, and
J. F.
Gibbons
, “
Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors
,”
J. Appl. Phys.
80
(
3
),
1567
(
1996
).
40.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
, “
On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration
,”
IEEE Trans. Electron Devices
41
(
12
),
2357
2362
(
1994
).
41.
H.
Lang
,
S.
Zhang
, and
Z.
Liu
, “
Mobility anisotropy of two-dimensional semiconductors
,”
Phys. Rev. B
94
(
23
),
235306
(
2016
).
42.
J.
Xiao
,
M.
Long
,
M.
Li
,
X.
Li
,
H.
Xu
, and
K.
Chan
, “
Carrier mobility of MoS2 nanoribbons with edge chemical modification
,”
Phys. Chem. Chem. Phys.
17
(
10
),
6865
6873
(
2015
).
43.
J.
Xi
,
M.
Long
,
L.
Tang
,
D.
Wang
, and
Z.
Shuai
, “
First-principles prediction of charge mobility in carbon and organic nanomaterials
,”
Nanoscale
4
(
15
),
4348
4369
(
2012
).
44.
J.
Schliemann
and
D.
Loss
, “
Anisotropic transport in a two-dimensional electron gas in the presence of spin-orbit coupling
,”
Phys. Rev. B
68
(
16
),
165311
(
2003
).
45.
M.
Long
,
L.
Tang
,
D.
Wang
,
Y.
Li
, and
Z.
Shuai
, “
Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions
,”
ACS Nano
5
(
4
),
2593
2600
(
2011
).
46.
P.
Li
,
W.
Wu
,
Y.
Xu
,
J.
Liu
,
S.
Wu
,
Y.
Ye
,
C.
Liang
, and
X. C.
Zeng
, “
Two-dimensional IV−V monolayers with highly anisotropic carrier mobility and electric transport properties
,”
J. Phys. Chem. Lett.
12
(
3
),
1058
(
2021
).
47.
J.
Kang
,
H.
Sahin
,
H. D.
Ozaydin
,
R. T.
Senger
, and
F. M.
Peeters
, “
TiS3 nanoribbons: Width-independent band gap and strain-tunable electronic properties
,”
Phys. Rev. B
92
(
7
),
075413
(
2015
).
48.
H.
Yi
,
T.
Komesu
,
S.
Gilbert
,
G.
Hao
,
A. J.
Yost
,
A.
Lipatov
,
A.
Sinitskii
,
J.
Avila
,
C.
Chen
,
M. C.
Asensio
, and
P. A.
Dowben
, “
The band structure of the quasi-one-dimensional layered semiconductor TiS3(001)
,”
Appl. Phys. Lett.
112
(
5
),
052102
(
2018
).
49.
F.
Saiz
,
J.
Carrete
, and
R.
Rurali
, “
Optimisation of the thermoelectric efficiency of zirconium trisulphide monolayers through unixial and biaxial strain
,”
Nanoscale Adv.
2
(
11
),
5352
5361
(
2020
).
50.
R.
Ahammed
,
A.
Rawat
,
N.
Jena
,
Dimple
,
M. K.
Mohanta
, and
A.
De Sarkar
, “
ZrS3/MS2 and ZrS3/MXY (M = Mo, W; X, YS, Se, Te; X ≠ Y) type-II van der Waals hetero-bilayers: Prospective candidates in 2D excitonic solar cells
,”
Appl. Surf. Sci.
499
,
143894
(
2020
).

Supplementary Material

You do not currently have access to this content.