We propose a peculiar method to induce the antichiral edge state (AES) based on off-resonant circularly polarized (ORCP) light and further study its edge-state transitions and transport properties in zigzag graphene nanoribbon. The results show that the vertical irradiation of the ORCP light on two boundaries of the system could be regarded as a modified Haldane model for inducing the AES. In particular, under the antiferromagnetic (AFM) exchange field, the system with the AES can be controlled by an electric field between spin-polarized (SP) AESs and band insulators. As a result, a SPAES/AES/SPAES junction can be formed. In two SPAES regions, the spin orientation of the SPAES can be modulated by an electric field, giving rise to the switch between the on state with enhanced conductance contributed by two edge channels and a bulk channel, and the off state. Furthermore, by modulating the AFM exchange field in two SPAES regions as parallel and antiparallel configurations, the corresponding conductance is significantly different due to the different spin directions of the AES, finally leading to giant magnetoresistance effect that can be cut off and tuned on by an electric field. In addition, the transport properties based on the AESs are moderately robust against the disorder. These findings provide a view to study the peculiar AESs and are expected to be applied in electronic devices based on the AESs.

1.
Y. F.
Ren
,
Z. H.
Qiao
, and
Q.
Niu
, “
Engineering corner states from two-dimensional topological insulators
,”
Phys. Rev. Lett.
124
,
166804
(
2020
).
2.
X. L.
and
H.
Xie
, “
Topological edge states and transport properties in zigzag stanene nanoribbons with magnetism
,”
New J. Phys.
24
,
033010
(
2022
).
3.
G.
Zhao
,
H. M.
Mu
,
F.
Liu
, and
Z. F.
Wang
, “
Folding graphene into a Chern insulator with light irradiation
,”
Nano Lett.
20
,
5860
5865
(
2020
).
4.
M.
Ezawa
, “
Monolayer topological insulators: Silicene, germanene, and stanene
,”
J. Phys. Soc. Jpn.
84
,
121003
(
2015
).
5.
M.
Ezawa
, “
Photoinduced topological phase transition and a single Dirac-cone state in silicene
,”
Phys. Rev. Lett.
110
,
026603
(
2013
).
6.
Y. C.
Zhuang
and
Q. F.
Sun
, “
Phase diagrams and edge-state transitions in graphene with spin-orbit coupling and magnetic and pseudomagnetic fields
,”
Phys. Rev. B
106
,
165417
(
2022
).
7.
H.
Pan
,
Z. S.
Li
,
C. C.
Liu
,
G. B.
Zhu
,
Z. H.
Qiao
, and
Y. G.
Yao
, “
Valley-polarized quantum anomalous Hall effect in silicene
,”
Phys. Rev. Lett.
112
,
106802
(
2014
).
8.
X. Y.
Zhao
,
Z. T.
Wang
,
J. P.
Chen
, and
B.
Wang
, “
Topological properties of Xene tuned by perpendicular electric field and exchange field in the presence of Rashba spin-orbit coupling
,”
J. Phys.: Condens. Matter
35
,
095401
(
2023
).
9.
X. F.
Qian
,
J. W.
Liu
,
L.
Fu
, and
J.
Li
, “
Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
,”
Science
346
,
1344
1347
(
2014
).
10.
J.
Zheng
,
Y.
Xiang
,
C. L.
Li
,
R. Y.
Yuan
,
F.
Chi
, and
Y.
Guo
, “
Multichannel depletion-type field-effect transistor based on ferromagnetic germanene
,”
Phys. Rev. Appl.
16
,
024046
(
2021
).
11.
J.
Zheng
,
Y.
Xiang
,
C. L.
Li
,
R. Y.
Yuan
,
F.
Chi
, and
Y.
Guo
, “
All-optically controlled topological transistor based on Xenes
,”
Phys. Rev. Appl.
14
,
034027
(
2020
).
12.
Y.
Xu
,
J.
Wang
,
J. F.
Liu
, and
H.
Xu
, “
Giant magnetoresistance effect due to the tunneling between quantum anomalous Hall edge states
,”
Appl. Phys. Lett.
118
,
222401
(
2021
).
13.
J. J.
Feng
,
H.
Tan
,
J. F.
Liu
, and
J.
Wang
, “
Field-effect tunneling between quantum valley Hall edge states and topological transistors based on bilayer graphene
,”
Phys. Rev. Appl.
19
,
024072
(
2023
).
14.
L. A.
Wray
, “
Device physics topological transistor
,”
Nat. Phys.
8
,
705
706
(
2012
).
15.
Q. H.
Liu
,
X. W.
Zhang
,
L. B.
Abdalla
,
A.
Fazzio
, and
A.
Zunger
, “
Switching a normal insulator into a topological insulator via electric field with application to phosphorene
,”
Nano Lett.
15
,
1222
1228
(
2015
).
16.
E.
Colomés
and
M.
Franz
, “
Antichiral edge states in a modified Haldane nanoribbon
,”
Phys. Rev. Lett.
120
,
086603
(
2018
).
17.
M.
Mannaï
and
S.
Haddad
, “
Strain tuned topology in the Haldane and the modified Haldane models
,”
J. Phys.: Condens. Matter
32
,
225501
(
2020
).
18.
X. L.
,
J. E.
Yang
, and
H. J.
Chen
, “
Manipulation of antichiral edge state based on modified Haldane model
,”
New J. Phys.
24
,
103021
(
2022
).
19.
J. E.
Yang
,
X. L.
Lu
, and
H.
Xie
, “
Modulation of antichiral edge states in zigzag honeycomb nanoribbons by side potentials
,”
Commun. Phys.
6
,
62
(
2023
).
20.
X. L.
and
H.
Xie
, “
Bipolar and unipolar valley filter effects in graphene-based P/N junction
,”
New J. Phys.
22
,
073003
(
2020
).
21.
X. L.
and
H.
Xie
, “
Thermal currents obtained and mutually switched by a modified Haldane model in graphene
,”
Commun. Theor. Phys.
74
,
035702
(
2022
).
22.
M.
Vila
,
N. T.
Hung
,
S.
Roche
, and
R.
Saito
, “
Tunable circular dichroism and valley polarization in the modified Haldane model
,”
Phys. Rev. B
99
,
161404
(
2019
).
23.
N. P.
Armitage
,
E. J.
Mele
, and
A.
Vishwanath
, “
Weyl and Dirac semimetals in three-dimensional solids
,”
Rev. Mod. Phys.
90
,
015001
(
2018
).
24.
X. G.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
, “
Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
,”
Phys. Rev. B
83
,
205101
(
2011
).
25.
R. Q.
Bao
,
S.
Mandal
,
H. W.
Xu
,
X. R.
Xu
,
R.
Banerjee
, and
T. C. H.
Liew
, “
Spin-polarized antichiral exciton-polariton edge states
,”
Phys. Rev. B
106
,
235310
(
2022
).
26.
X.
Xi
,
B.
Yan
,
L. N.
Yang
,
Y.
Meng
,
Z. X.
Zhu
,
J. M.
Chen
,
Z. Y.
Wang
,
P. H.
Zhou
,
P. P.
Shum
,
Y. H.
Yang
,
H. S.
Chen
,
S.
Mandal
,
G. G.
Liu
,
B. L.
Zhang
, and
Z.
Gao
, “
Topological antichiral surface states in a magnetic Weyl photonic crystal
,”
Nat. Commun.
14
,
1991
(
2023
).
27.
J. S.
Moodera
,
L. R.
Kinder
,
T. M.
Wong
, and
R.
Meservey
, “
Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions
,”
Phys. Rev. Lett.
74
,
3273
3276
(
1995
).
28.
T.
Yokoyama
,
Y.
Tanaka
, and
N.
Nagaosa
, “
Anomalous magnetoresistance of a two-dimensional ferromagnet/ferromagnet junction on the surface of a topological insulator
,”
Phys. Rev. B
81
,
121401
(
2010
).
29.
X. J.
Qiu
,
Z. Z.
Cao
,
J.
Hou
, and
C. Y.
Yang
, “
Controlled giant magnetoresistance and spin-valley transport in an asymmetrical MoS tunnel junction
,”
Appl. Phys. Lett.
117
,
102401
(
2020
).
30.
W. T.
Lu
,
H. Y.
Tian
,
H. M.
Liu
,
Y. F.
Li
, and
W.
Li
, “
Spin- and valley-dependent negative magnetoresistance in a ferromagnetic MoS junction with a quantum well
,”
Phys. Rev. B
98
,
075405
(
2018
).
31.
L.
Smejkal
,
A. H.
MacDonald
,
J.
Sinova
,
S.
Nakatsuji
, and
T.
Jungwirth
, “
Anomalous Hall antiferromagnets
,”
Nat. Rev. Mater.
7
,
482
496
(
2022
).
32.
W.-T.
Lu
and
Q.-F.
Sun
, “
Topologically protected magnetoresistance by quantum anomalous Hall effect
,”
Phys. Rev. B
108
,
075422
(
2023
).
33.
P.
Högl
,
T.
Frank
,
K.
Zollner
,
D.
Kochan
,
M.
Gmitra
, and
J.
Fabian
, “
Quantum anomalous Hall effects in graphene from proximity-induced uniform and staggered spin-orbit and exchange coupling
,”
Phys. Rev. Lett.
124
,
136403
(
2020
).
34.
K.
Zollner
,
M.
Gmitra
,
T.
Frank
, and
J.
Fabian
, “
Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni)
,”
Phys. Rev. B
94
,
155441
(
2016
).
35.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
, “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
,
722
726
(
2010
).
36.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
P. J.
Kelly
, and
J.
van den Brink
, “
Publisher's Note:: Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations [Phys. Rev. B 76, 073103 (2007)]
,”
Phys. Rev. B
76
,
079902
(
2007
).
37.
P.
Mohan
,
R.
Saxena
,
A.
Kundu
, and
S.
Rao
, “
Brillouin-Wigner theory for Floquet topological phase transitions in spin-orbit-coupled materials
,”
Phys. Rev. B
94
,
235419
(
2016
).
38.
A.
Eckardt
and
E.
Anisimovas
, “
High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective
,”
New J. Phys.
17
,
093039
(
2015
).
39.
B. K.
Nikolic
,
L. P.
Zârbo
, and
S.
Souma
, “
Imaging mesoscopic spin Hall flow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures
,”
Phys. Rev. B
73
,
075303
(
2006
).
40.
T.
Stegmann
and
N.
Szpak
, “
Current splitting and valley polarization in elastically deformed graphene
,”
2D Mater.
6
,
015024
(
2018
).
41.
S. R.
Power
,
M. R.
Thomsen
,
A. P.
Jauho
, and
T. G.
Pedersen
, “
Electron trajectories and magnetotransport in nanopatterned graphene under commensurability conditions
,”
Phys. Rev. B
96
,
075425
(
2017
).
You do not currently have access to this content.