Recent advances in the study of materials with topological electronic band structures have revealed magnetic materials exhibiting giant anomalous Hall effects (AHEs). The giant AHE has not only attracted the research interest in its mechanism but also opened up the possibility of practical application in magnetic sensors. In this article, we describe simulation-based investigations of AHE magnetic sensors for applications to read head sensors (readers) of hard disk drives. With the shrinking of magnetic recording patterns, the reader technology, which currently uses multilayer-based tunnel magnetoresistance (TMR) devices, is associated with fundamental challenges, such as insufficient spatial resolution and signal-to-noise ratio (SNR) in sensors with dimensions below 20 nm. The structure of an AHE-based device composed of a single ferromagnetic material is advantageous for magnetic sensors with nanoscale dimensions. We found that AHE readers using topological ferromagnets with giant AHE, such as Co2MnGa, can achieve a higher SNR than current TMR readers. The higher SNR originates from the large output signal of the giant AHE as well as from the reduced thermal magnetic noise, which is the dominant noise in TMR readers. We highlight a major challenge in the development of AHE readers: the reduction in the output signal due to the shunting of the bias current and the leakage of the Hall voltage through the soft magnetic shields surrounding the AHE reader. We propose reader structures that overcome this challenge. Finally, we discuss the scope for future research to realize AHE readers.

1.
R. S.
Popovic
,
Hall Effect Devices
, 2nd ed. (
CRC Press
,
2003
).
2.
E.
Ramsden
,
Hall-Effect Sensors Theory and Application
, 2nd ed. (
Newnes
,
2006
).
3.
W. J.
Fleming
,
IEEE Sens. J.
1
,
296
(
2001
).
7.
G. X.
Miao
and
G.
Xiao
,
Appl. Phys. Lett.
85
,
73
(
2004
).
8.
Y.
Zhu
and
J. W.
Cai
,
Appl. Phys. Lett.
90
,
012104
(
2007
).
9.
J.-P.
Zhu
,
L.
Ma
,
S.-M.
Zhou
,
J.
Miao
, and
Y.
Jiang
,
Chin. Phys. B
24
,
017101
(
2015
).
10.
J.
Li
,
D.
Yue
,
J.
Xu
, and
X.
Jin
,
J. Magn. Magn. Mater.
534
,
167978
(
2021
).
11.
M.
Onoda
and
N.
Nagaosa
,
J. Phys. Soc. Jpn.
71
,
19
(
2002
).
12.
T.
Jungwirth
,
Q.
Niu
, and
A. H.
MacDonald
,
Phys. Rev. Lett.
88
,
207208
(
2002
).
13.
D.
Vanderbilt
,
Berry Phases in Electronic Structure Theory
(
Cambridge University Press
,
2018
).
14.
Y.
Yao
,
L.
Kleinman
,
A. H.
MacDonald
,
J.
Sinova
,
T.
Jungwirth
,
D.
sheng Wang
,
E.
Wang
, and
Q.
Niu
,
Phys. Rev. Lett.
92
,
037204
(
2004
).
15.
Y. J.
Chen
,
D.
Basiaga
,
J. R.
O'Brien
, and
D.
Heiman
,
Appl. Phys. Lett.
84
,
4301
(
2004
).
16.
Y.
Tian
,
L.
Ye
, and
X.
Jin
,
Phys. Rev. Lett.
103
,
087206
(
2009
).
17.
A.
Gerber
,
A.
Milner
,
A.
Finkler
,
M.
Karpovski
,
L.
Goldsmith
,
J.
Tuaillon-Combes
,
O.
Boisron
,
P.
Mélinon
, and
A.
Perez
,
Phys. Rev. B
69
,
224403
(
2004
).
18.
E.
Vilanova Vidal
,
G.
Stryganyuk
,
H.
Schneider
,
C.
Felser
, and
G.
Jakob
,
Appl. Phys. Lett.
99
,
132509
(
2011
).
19.
J.
Kübler
and
C.
Felser
,
Phys. Rev. B
85
,
012405
(
2012
).
20.
J.
Kübler
and
C.
Felser
,
Europhys. Lett.
114
,
47005
(
2016
).
21.
P.
Li
,
J.
Koo
,
W.
Ning
,
J.
Li
,
L.
Miao
,
L.
Min
,
Y.
Zhu
,
Y.
Wang
,
N.
Alem
,
C.-X.
Liu
,
Z.
Mao
, and
B.
Yan
,
Nat. Commun.
11
,
3476
(
2020
).
22.
H.
Chen
,
Q.
Niu
, and
A. H.
MacDonald
,
Phys. Rev. Lett.
112
,
017205
(
2014
).
23.
J.
Kübler
and
C.
Felser
,
Europhys. Lett.
108
,
67001
(
2014
).
24.
J.
Noky
,
J.
Gayles
,
C.
Felser
, and
Y.
Sun
,
Phys. Rev. B
97
,
220405
(
2018
).
25.
S.
Nakatsuji
,
N.
Kiyohara
, and
T.
Higo
,
Nature
527
,
212
(
2015
).
26.
J. C.
Tung
and
G. Y.
Guo
,
New J. Phys.
15
,
033014
(
2013
).
27.
A.
Sakai
,
Y. P.
Mizuta
,
A. A.
Nugroho
,
R.
Sihombing
,
T.
Koretsune
,
M. T.
Suzuki
,
N.
Takemori
,
R.
Ishii
,
D.
Nishio-Hamane
,
R.
Arita
,
P.
Goswami
, and
S.
Nakatsuji
,
Nat. Phys.
14
,
1119
(
2018
).
28.
T.
Kida
,
L. A.
Fenner
,
A. A.
Dee
,
I.
Terasaki
,
M.
Hagiwara
, and
A. S.
Wills
,
J. Phys.: Condens. Matter
23
,
112205
(
2011
).
29.
Q.
Wang
,
S.
Sun
,
X.
Zhang
,
F.
Pang
, and
H.
Lei
,
Phys. Rev. B
94
,
075135
(
2016
).
30.
L.
Ye
,
M.
Kang
,
J.
Liu
,
F.
Von Cube
,
C. R.
Wicker
,
T.
Suzuki
,
C.
Jozwiak
,
A.
Bostwick
,
E.
Rotenberg
,
D. C.
Bell
,
L.
Fu
,
R.
Comin
, and
J. G.
Checkelsky
,
Nature
555
,
638
(
2018
).
31.
E.
Liu
,
Y.
Sun
,
N.
Kumar
,
L.
Muechler
,
A.
Sun
,
L.
Jiao
,
S. Y.
Yang
,
D.
Liu
,
A.
Liang
,
Q.
Xu
,
J.
Kroder
,
V.
Süß
,
H.
Borrmann
,
C.
Shekhar
,
Z.
Wang
,
C.
Xi
,
W.
Wang
,
W.
Schnelle
,
S.
Wirth
,
Y.
Chen
,
S. T. B.
Goennenwein
, and
C.
Felser
,
Nat. Phys.
14
,
1125
(
2018
).
32.
A.
Sakai
,
S.
Minami
,
T.
Koretsune
,
T.
Chen
,
T.
Higo
,
Y.
Wang
,
T.
Nomoto
,
M.
Hirayama
,
S.
Miwa
,
D.
Nishio-Hamane
,
F.
Ishii
,
R.
Arita
, and
S.
Nakatsuji
,
Nature
581
,
53
(
2020
).
33.
Y. M.
Lu
,
J. W.
Cai
,
H. Y.
Pan
, and
L.
Sun
,
Appl. Phys. Lett.
100
,
022404
(
2012
).
34.
T.
Zhu
,
P.
Chen
,
Q. H.
Zhang
,
R. C.
Yu
, and
B. G.
Liu
,
Appl. Phys. Lett.
104
,
202404
(
2014
).
35.
W. L.
Peng
,
J. Y.
Zhang
,
L. S.
Luo
,
G. N.
Feng
, and
G. H.
Yu
,
J. Appl. Phys.
125
,
093906
(
2019
).
36.
J.
Shiogai
,
Z.
Jin
,
Y.
Satake
,
K.
Fujiwara
, and
A.
Tsukazaki
,
Appl. Phys. Express
12
,
123001
(
2019
).
37.
Y.
Satake
,
K.
Fujiwara
,
J.
Shiogai
,
T.
Seki
, and
A.
Tsukazaki
,
Sci. Rep.
9
,
3282
(
2019
).
38.
K.
Wang
,
Y.
Zhang
, and
G.
Xiao
,
Phys. Rev. Appl.
13
,
064009
(
2020
).
39.
Y.
Zhang
,
K.
Wang
, and
G.
Xiao
,
Appl. Phys. Lett.
116
,
212404
(
2020
).
40.
A. K.
Ramesh
,
Y.-T.
Chou
,
M.-T.
Lu
,
P.
Singh
, and
Y.-C.
Tseng
,
Nanotechnology
33
,
335502
(
2022
).
41.
T.
Kuwashima
,
K.
Fukuda
,
H.
Kiyono
,
K.
Sato
,
T.
Kagami
,
S.
Saruki
,
T.
Uesugi
,
N.
Kasahara
,
N.
Ohta
,
K.
Nagai
,
N.
Hachisuka
,
N.
Takahashi
,
M.
Naoe
,
S.
Miura
,
K.
Barada
,
T.
Kanaya
,
K.
Inage
, and
A.
Kobayashi
,
IEEE Trans. Magn.
40
,
176
(
2004
).
42.
S.
Mao
,
E.
Linville
,
J.
Nowak
,
Z.
Zhang
,
S.
Chen
,
B.
Karr
,
P.
Anderson
,
M.
Ostrowski
,
T.
Boonstra
,
H.
Cho
,
O.
Heinonen
,
M.
Kief
,
S.
Xue
,
J.
Price
,
A.
Shukh
,
N.
Amin
,
P.
Kolbo
,
P.-L.
Lu
,
P.
Steiner
,
Y. C.
Feng
,
N.-H.
Yeh
,
B.
Swanson
, and
P.
Ryan
,
IEEE Trans. Magn.
40
,
307
(
2004
).
43.
D. D.
Djayaprawira
,
K.
Tsunekawa
,
M.
Nagai
,
H.
Maehara
,
S.
Yamagata
,
N.
Watanabe
,
S.
Yuasa
,
Y.
Suzuki
, and
K.
Ando
,
Appl. Phys. Lett.
86
,
092502
(
2005
).
44.
K.
Tsunekawa
,
D. D.
Djayaprawira
,
M.
Nagai
,
H.
Maehara
,
S.
Yamagata
,
N.
Watanabe
,
S.
Yuasa
,
Y.
Suzuki
, and
K.
Ando
,
Appl. Phys. Lett.
87
,
072503
(
2005
).
45.
Y.
Nagamine
,
H.
Maehara
,
K.
Tsunekawa
,
D. D.
Djayaprawira
,
N.
Watanabe
,
S.
Yuasa
, and
K.
Ando
,
Appl. Phys. Lett.
89
,
162507
(
2006
).
46.
H.
Takahashi
, US 6,791,792 B2 (
2004
).
47.
R. Y.
Umetsu
,
K.
Kobayashi
,
A.
Fujita
,
R.
Kainuma
, and
K.
Ishida
,
Scr. Mater.
58
,
723
(
2008
).
48.
P. J.
Webster
,
J. Phys. Chem. Solids
32
,
1221
(
1971
).
49.
K.
Sumida
,
Y.
Sakuraba
,
K.
Masuda
,
T.
Kono
,
M.
Kakoki
,
K.
Goto
,
W.
Zhou
,
K.
Miyamoto
,
Y.
Miura
,
T.
Okuda
, and
A.
Kimura
,
Commun. Mater.
1
,
89
(
2020
).
50.
K.
Fujiwara
,
Y.
Satake
,
J.
Shiogai
, and
A.
Tsukazaki
,
APL Mater.
7
,
111103
(
2019
).
51.
K.
Fujiwara
,
Y.
Kato
,
H.
Abe
,
S.
Noguchi
,
J.
Shiogai
,
Y.
Niwa
,
H.
Kumigashira
,
Y.
Motome
, and
A.
Tsukazaki
,
Nat. Commun.
14
,
3399
(
2023
).
52.
H.
Giefers
and
M.
Nicol
,
J. Alloys Compd.
422
,
132
(
2006
).
53.
H.
Nakayama
,
K.
Masuda
,
J.
Wang
,
A.
Miura
,
K.
Uchida
,
M.
Murata
, and
Y.
Sakuraba
,
Phys. Rev. Mater.
3
,
114412
(
2019
).
54.
W.
Zhou
and
Y.
Sakuraba
,
Appl. Phys. Express
13
,
043001
(
2020
).
55.
Y.
Wang
,
C.
Li
,
H.
Zhou
,
J.
Wang
,
G.
Chai
, and
C.
Jiang
,
Appl. Phys. Lett.
118
,
071902
(
2021
).
56.
D.
Reinsel
,
J.
Gantz
, and
J.
Rydning
, see https://www.seagate.com/files/www-content/our-story/trends/files/dataage-idc-report-final.pdf for “
The digitization of the world from edge to core.
57.
Thomas Coughlin
, see https://www.forbes.com/sites/tomcoughlin/2020/05/29/hdd-market-history-and-projections/?sh=5c0a42486682 for “
HDD market history and projections
” (
2020
).
58.
M. H.
Kryder
,
E. C.
Gage
,
T. W.
Mcdaniel
,
W. A.
Challener
,
R. E.
Rottmayer
,
G.
Ju
,
Y.-T.
Hsia
, and
M.
Fatih Erden
,
Proc. IEEE
96
,
1810
(
2008
).
59.
Y.
Kubota
,
Y.
Peng
,
Y.
Ding
,
E. K. C.
Chang
,
L.
Gao
,
F.
Zavaliche
,
T. J.
Klemmer
,
S.
Zhu
,
X.
Zhu
,
P. W.
Huang
,
A. Q.
Wu
,
H.
Amini
,
S.
Granz
,
T.
Rausch
,
C. J.
Rea
,
J.
Qiu
,
H.
Yin
,
M. A.
Seigler
,
Y.
Chen
,
G.
Ju
, and
J. U.
Thiele
,
IEEE Trans. Magn.
54
,
3201206
(
2018
).
60.
S.
Granz
,
J.
Jury
,
C.
Rea
,
G.
Ju
,
J. U.
Thiele
,
T.
Rausch
, and
E. C.
Gage
,
IEEE Trans. Magn.
55
,
3100203
(
2019
).
61.
J. G.
Zhu
,
X.
Zhu
, and
Y.
Tang
,
IEEE Trans. Magn.
44
,
125
(
2008
).
62.
Y.
Nakagawa
,
M.
Takagishi
,
N.
Narita
,
T.
Nagasawa
,
G.
Koizumi
,
W.
Chen
,
S.
Kawasaki
,
T.
Roppongi
,
A.
Takeo
, and
T.
Maeda
,
Appl. Phys. Lett.
122
,
042403
(
2023
).
63.
M.
Takagishi
,
N.
Narita
,
H.
Iwasaki
,
H.
Suto
,
T.
Maeda
, and
A.
Takeo
,
IEEE Trans. Magn.
57
,
3300106
(
2021
).
64.
Y.
Nakagawa
,
M.
Takagishi
,
N.
Narita
,
R.
Osamura
,
G.
Koizumi
,
N.
Asakura
,
F.
Kudo
,
J.
Watanabe
,
W.
Chen
,
A.
Kaizu
,
Z.
Tang
,
C. S. Y.
Mo
,
M.
Tse
,
T.
Roppongi
,
M.
Ohtake
,
A.
Takeo
, and
T.
Maeda
,
IEEE Trans. Magn.
(published online, 2023).
65.
M.
Takagishi
,
K.
Yamada
,
H.
Iwasaki
,
H. N.
Fuke
, and
S.
Hashimoto
,
IEEE Trans. Magn.
46
,
2086
(
2010
).
66.
G.
Albuquerque
,
S.
Hernandez
,
M. T.
Kief
,
D.
Mauri
, and
L.
Wang
,
IEEE Trans. Magn.
58
,
3100410
(
2022
).
67.
S.
Maat
and
A. C.
Marley
, “
Physics and design of hard disk drive magnetic recording read heads BT
,” in
Handbook of Spintronics
(
Springer
,
Dordrecht, The Netherlands
,
2016
).
68.
T.
Nakatani
,
Z.
Gao
, and
K.
Hono
,
MRS Bull.
43
,
106
(
2018
).
69.
B.
Dieny
,
V. S.
Speriosu
,
S. S. P.
Parkin
,
B. A.
Gurney
,
D. R.
Wilhoit
, and
D.
Mauri
,
Phys. Rev. B
43
,
1297
(
1991
).
70.
C. M.
Park
, in
Digest of the 30th Magnetic Recording Conference (TMRC 2019)
(
IEEE
,
2019
).
71.
J.
Heidmann
and
A. M.
Taratorin
, in
Handbook of Magnetic Materials
, 1st ed. (
Elsevier B.V
.,
2011
), pp.
1
105
.
72.
J. R.
Childress
,
M. J.
Carey
,
S.
Maat
,
N.
Smith
,
R. E.
Fontana
,
D.
Druist
,
K.
Carey
,
J. A.
Katine
,
N.
Robertson
,
T. D.
Boone
,
M.
Alex
,
J.
Moore
, and
C. H.
Tsang
,
IEEE Trans. Magn.
44
,
90
(
2008
).
73.
K.
Nikolaev
,
P.
Anderson
,
P.
Kolbo
,
D.
Dimitrov
,
S.
Xue
,
X.
Peng
,
T.
Pokhil
,
H.
Cho
, and
Y.
Chen
,
J. Appl. Phys.
103
,
07F533
(
2008
).
74.
Z.
Diao
,
M.
Chapline
,
Y.
Zheng
,
C.
Kaiser
,
A.
Ghosh Roy
,
C. J.
Chien
,
C.
Shang
,
Y.
Ding
,
C.
Yang
,
D.
Mauri
,
Q.
Leng
,
M.
Pakala
,
M.
Oogane
, and
Y.
Ando
,
J. Magn. Magn. Mater.
356
,
73
(
2014
).
75.
T.
Nakatani
,
S.
Li
,
Y.
Sakuraba
,
T.
Furubayashi
, and
K.
Hono
,
IEEE Trans. Magn.
54
,
3300211
(
2018
).
76.
F. J.
Jedema
,
A. T.
Filip
, and
B. J.
van Wees
,
Nature
410
,
345
(
2001
).
77.
Y. K.
Takahashi
,
S.
Kasai
,
S.
Hirayama
,
S.
Mitani
, and
K.
Hono
,
Appl. Phys. Lett.
100
,
052405
(
2012
).
78.
M.
Yamada
,
D.
Sato
,
N.
Yoshida
,
M.
Sato
,
K.
Meguro
, and
S.
Ogawa
,
IEEE Trans. Magn.
49
,
713
(
2013
).
79.
S.
Shirotori
,
S.
Hashimoto
,
M.
Takagishi
,
Y.
Kamiguchi
, and
H.
Iwasaki
,
Appl. Phys. Express
8
,
023103
(
2015
).
80.
W.
Yu
, see https://www.comsol.com/blogs/micromagnetic-simulation-with-comsol-multiphysics/ for “
Micromagnetic Simulation with COMSOL Multiphysics®
.”
81.
M. J.
Donahue
and
D. G.
Porter
,
OOMMF User's Guide, Version 1.0
(
NIST
,
Gaithersburg
,
1999
).
82.
N.
Smith
and
P.
Arnett
,
Appl. Phys. Lett.
78
,
1448
(
2001
).
83.
N.
Smith
and
P.
Arnett
,
IEEE Trans. Magn.
38
,
32
(
2002
).
84.
J.-G.
Zhu
and
X.
Zhu
,
IEEE Trans. Magn.
40
,
182
(
2004
).
85.
J.-G.
Zhu
,
N.
Kim
,
Y.
Zhou
,
Y.
Zheng
,
J.
Chang
,
K.
Ju
,
X.
Zhu
, and
R. M.
White
,
IEEE Trans. Magn.
40
,
2323
(
2004
).
86.
M.
Covington
,
M.
AlHajDarwish
,
Y.
Ding
,
N. J.
Gokemeijer
, and
M. A.
Seigler
,
Phys. Rev. B
69
,
184406
(
2004
).
87.
G.
Mihajlovic
,
J. C.
Read
,
N.
Smith
,
P.
Van Der Heijden
,
C. H.
Tsang
, and
J. R.
Childress
,
IEEE Magn. Lett.
8
,
3101104
(
2017
).
88.
W.
Zhou
,
H.
Sepehri-Amin
,
T.
Taniguchi
,
S.
Tamaru
,
Y.
Sakuraba
,
S.
Kasai
,
H.
Kubota
, and
K.
Hono
,
Appl. Phys. Lett.
114
,
172403
(
2019
).
90.
W.
Kohn
and
N.
Rostoker
,
Phys. Rev.
94
,
1111
(
1954
).
92.
See http://kkr.issp.u-tokyo.ac.jp for “
AkaiKKR
.”
93.
H.
Ebert
,
D.
Ködderitzsch
, and
J.
Minár
,
Rep. Prog. Phys.
74
,
096501
(
2011
).
94.
J.
Noky
,
Y.
Zhang
,
J.
Gooth
,
C.
Felser
, and
Y.
Sun
,
npj Comput. Mater.
6
,
77
(
2020
).
95.
G.
Xing
,
K.
Masuda
,
T.
Tadano
, and
Y.
Miura
, arXiv:2309.07722
96.
Y.
Iwasaki
,
R.
Sawada
,
E.
Saitoh
, and
M.
Ishida
,
Commun. Mater.
2
,
31
(
2021
).
97.
K.
Nawa
,
T.
Suzuki
,
K.
Masuda
,
S.
Tanaka
, and
Y.
Miura
,
Phys. Rev. Appl.
20
,
024044
(
2023
).

Supplementary Material

You do not currently have access to this content.