Spin plays a key role in physical and chemical reactions, such as oxygen evolution and hydrogen evolution reactions (OER/HER), but the spin–activity correlation has remained unclear. Based on a transition metal (TM)-doped PtN2 monolayer model with a well-defined spin center as an adsorption site, we here reveal that only an active spin state can enhance the strength of hydrogen adsorption, while an inert spin state offers very little influence. Specifically, the an unpaired electron along the out-of-plane direction such as in the d z 2 orbital, acting as an active spin state, will strongly hybridize with hydrogen, resulting in enhanced hydrogen binding energy because the d z 2 orbital is just enough to accommodate two electrons to form a bonding orbital. While the in-plane unpaired electron such as in the d x 2 y 2 orbital plays a negligible role in an adsorbing hydrogen atom. This is verified by a series of single atom catalysts comprising of PtN2 monolayer by replacing a Pt atom with a TM (Fe, Co, Ni, Ru, Rh, Pd, Os, or Ir) atom or subsequent adsorbing a Cl atom. One of the most promising materials is Pd@PtN2-Cl that offers superior HER activity, even better than pure Pt. This work uncovers the nature of spin–activity correlation, thus paving the way for the design of high-performance catalysts through spin-engineering.

1.
B.
Yoon
,
H.
Häkkinen
,
U.
Landman
,
A. S.
Wörz
,
J.-M.
Antonietti
,
S.
Abbet
,
K.
Judai
, and
U.
Heiz
,
Science
307
(
5708
),
403
407
(
2005
).
2.
N.
Mulakaluri
,
R.
Pentcheva
,
M.
Wieland
,
W.
Moritz
, and
M.
Scheffler
,
Phys. Rev. Lett.
103
(
17
),
176102
(
2009
).
3.
T. J.
Mills
,
F.
Lin
, and
S. W.
Boettcher
,
Phys. Rev. Lett.
112
(
14
),
148304
(
2014
).
4.
H.
Zhang
,
Q.
Yuan
,
T.
Wang
,
X.
Xue
,
Y.
Yuan
,
H.
Zhang
,
M.
Zhou
, and
W.
Ji
,
Appl. Phys. Lett.
119
(
24
),
243504
(
2021
).
5.
Z.
Lv
,
J.
Peng
,
Y.
Ma
,
B.
Wang
,
C.
Zhang
,
J.
Yao
,
K.
Wu
, and
Y.
Cheng
,
Appl. Phys. Lett.
123
(
17
),
172902
(
2023
).
6.
W.-Y.
Chen
,
L.
Li
,
T.
Huang
,
Z.-X.
Yang
,
T.
Zhang
,
G.-F.
Huang
,
W.
Hu
, and
W.-Q.
Huang
,
Appl. Phys. Lett.
123
(
17
),
171601
(
2023
).
7.
L.
Li
,
T.
Huang
,
K.
Liang
,
Y.
Si
,
J.-C.
Lian
,
W.-Q.
Huang
,
W.
Hu
, and
G.-F.
Huang
,
Phys. Rev. Appl.
18
(
1
),
014013
(
2022
).
8.
J.-Y.
Wang
,
G.-Y.
Huang
,
S.
Huang
,
J.
Xue
,
D.
Pan
,
J.
Zhao
, and
H.
Xu
,
Nano Lett.
18
(
8
),
4741
4747
(
2018
).
9.
X.
Liu
,
K.
Wang
,
T.
Zhang
,
H.
Liu
,
A.
Ren
,
S.
Ren
,
P.
Li
,
C.
Zhang
,
J.
Yao
, and
Y. S.
Zhao
,
Adv. Mater.
35
(
52
),
2305260
(
2023
).
10.
K.
Takeda
,
A.
Noiri
,
T.
Nakajima
,
T.
Kobayashi
, and
S.
Tarucha
,
Nature
608
(
7924
),
682
686
(
2022
).
11.
W.
Han
,
S.
Maekawa
, and
X.-C.
Xie
,
Nat. Mater.
19
(
2
),
139
152
(
2020
).
12.
H.
Wang
and
I.
Lekavicius
,
Appl. Phys. Lett.
117
(
23
),
230501
(
2020
).
13.
A.
Peña Corredor
,
A.
Anadón
,
L.
Schlur
,
J.
Robert
,
H.
Damas
,
J.-C.
Rojas-Sánchez
,
S.
Petit-Watelot
,
N.
Viart
,
D.
Preziosi
, and
C.
Lefevre
,
Appl. Phys. Lett.
123
(
7
),
072407
(
2023
).
14.
K.
Yang
,
H.
Chen
,
T.
Pope
,
Y.
Hu
,
L.
Liu
,
D.
Wang
,
L.
Tao
,
W.
Xiao
,
X.
Fei
,
Y.-Y.
Zhang
,
H.-G.
Luo
,
S.
Du
,
T.
Xiang
,
W. A.
Hofer
, and
H.-J.
Gao
,
Nat. Commun.
10
(
1
),
3599
(
2019
).
15.
E.
Ketkar
,
G. K.
Shukla
,
S.-C.
Lee
,
S.
Bhattacharjee
, and
S.
Singh
,
Appl. Phys. Lett.
123
(
18
),
182403
(
2023
).
16.
Y.-C.
Chang
,
I.
Huang
,
C.-Y.
Chen
,
M.-J.
Lin
,
S.-Y.
Chen
, and
J.-Y.
Li
,
Appl. Phys. Lett.
119
(
24
),
243503
(
2021
).
17.
G.
Venkat
,
C. D. W.
Cox
,
Z.
Zhou
,
N.
Leo
,
C. J.
Kinane
,
A. J.
Caruana
, and
K.
Morrison
,
Appl. Phys. Lett.
123
(
17
),
172408
(
2023
).
18.
G.
Bierhance
,
A.
Markou
,
O.
Gueckstock
,
R.
Rouzegar
,
Y.
Behovits
,
A. L.
Chekhov
,
M.
Wolf
,
T. S.
Seifert
,
C.
Felser
, and
T.
Kampfrath
,
Appl. Phys. Lett.
120
(
8
),
082401
(
2022
).
19.
H.
Bai
,
J.
Feng
,
D.
Liu
,
P.
Zhou
,
R.
Wu
,
C. T.
Kwok
,
W. F.
Ip
,
W.
Feng
,
X.
Sui
,
H.
Liu
, and
H.
Pan
,
Small
19
(
5
),
2205638
(
2023
).
20.
D.
Xue
,
P.
Yuan
,
S.
Jiang
,
Y.
Wei
,
Y.
Zhou
,
C.-L.
Dong
,
W.
Yan
,
S.
Mu
, and
J.-N.
Zhang
,
Nano Energy
105
,
108020
(
2023
).
21.
Z.
Sun
,
L.
Lin
,
J.
He
,
D.
Ding
,
T.
Wang
,
J.
Li
,
M.
Li
,
Y.
Liu
,
Y.
Li
,
M.
Yuan
,
B.
Huang
,
H.
Li
, and
G.
Sun
,
J. Am. Chem. Soc.
144
(
18
),
8204
8213
(
2022
).
22.
L.
Li
,
J.
Zhou
,
X.
Wang
,
J.
Gracia
,
M.
Valvidares
,
J.
Ke
,
M.
Fang
,
C.
Shen
,
J.
Chen
,
Y.
Chang
,
C.
Pao
,
S.
Hsu
,
J.
Lee
,
A.
Ruotolo
,
Y.
Chin
,
Z.
Hu
,
X.
Huang
, and
Q.
Shao
,
Adv. Mater.
35
(
35
),
2302966
(
2023
).
23.
P.
Lv
,
W.
Lv
,
D.
Wu
,
G.
Tang
,
X.
Yan
,
Z.
Lu
, and
D.
Ma
,
Phys. Rev. Appl.
19
(
5
),
054094
(
2023
).
24.
T.
Wu
,
X.
Ren
,
Y.
Sun
,
S.
Sun
,
G.
Xian
,
G. G.
Scherer
,
A. C.
Fisher
,
D.
Mandler
,
J. W.
Ager
,
A.
Grimaud
,
J.
Wang
,
C.
Shen
,
H.
Yang
,
J.
Gracia
,
H.-J.
Gao
, and
Z. J.
Xu
,
Nat. Commun.
12
(
1
),
3634
(
2021
).
25.
F. A.
Garcés-Pineda
,
M.
Blasco-Ahicart
,
D.
Nieto-Castro
,
N.
López
, and
J. R.
Galán-Mascarós
,
Nat. Energy
4
(
6
),
519
525
(
2019
).
26.
X.
Ren
,
T.
Wu
,
Y.
Sun
,
Y.
Li
,
G.
Xian
,
X.
Liu
,
C.
Shen
,
J.
Gracia
,
H.-J.
Gao
,
H.
Yang
, and
Z. J.
Xu
,
Nat. Commun.
12
(
1
),
2608
(
2021
).
27.
D.
Wu
,
H.
Yin
,
Z.
Wang
,
M.
Zhou
,
C.
Yu
,
J.
Wu
,
H.
Miao
,
T.
Yamamoto
,
W.
Zhaxi
,
Z.
Huang
,
L.
Liu
,
W.
Huang
,
W.
Zhong
,
Y.
Einaga
,
J.
Jiang
, and
Z.
Zhang
,
Angew. Chem., Int. Ed.
62
(
18
),
e202301925
(
2023
).
28.
J.
Yan
,
Y.
Wang
,
Y.
Zhang
,
S.
Xia
,
J.
Yu
, and
B.
Ding
,
Adv. Mater.
33
(
5
),
2007525
(
2021
).
29.
Z.
Li
,
Z.
Wang
,
S.
Xi
,
X.
Zhao
,
T.
Sun
,
J.
Li
,
W.
Yu
,
H.
Xu
,
T. S.
Herng
,
X.
Hai
,
P.
Lyu
,
M.
Zhao
,
S. J.
Pennycook
,
J.
Ding
,
H.
Xiao
, and
J.
Lu
,
ACS Nano
15
(
4
),
7105
7113
(
2021
).
30.
J.
Wan
,
W.
Chen
,
C.
Jia
,
L.
Zheng
,
J.
Dong
,
X.
Zheng
,
Y.
Wang
,
W.
Yan
,
C.
Chen
,
Q.
Peng
,
D.
Wang
, and
Y.
Li
,
Adv. Mater.
30
(
11
),
1705369
(
2018
).
31.
Q.
Fu
and
C.
Draxl
,
Phys. Rev. Lett.
122
(
4
),
046101
(
2019
).
32.
K.
Ding
,
A.
Gulec
,
A. M.
Johnson
,
N. M.
Schweitzer
,
G. D.
Stucky
,
L. D.
Marks
, and
P. C.
Stair
,
Science
350
(
6257
),
189
192
(
2015
).
33.
Z.
Fu
,
B.
Yang
, and
R.
Wu
,
Phys. Rev. Lett.
125
(
15
),
156001
(
2020
).
34.
B.
Jiang
,
F.
Zhang
,
Y.
Wang
,
X.
Xue
,
J.
Shi
,
X.
Zhao
,
L.
Zhang
,
R.
Pang
,
X.
Ren
,
S.
Li
, and
Z.
Zhang
,
Phys. Rev. B
107
(
20
),
205421
(
2023
).
35.
W.
Zhan
,
J.
Gao
,
X.
Li
,
H.
Wang
,
W.
Gao
, and
H.
Yin
,
Appl. Phys. Lett.
123
(
7
),
073901
(
2023
).
36.
Y.
Wang
,
X.
Ren
,
B.
Jiang
,
M.
Deng
,
X.
Zhao
,
R.
Pang
, and
S. F.
Li
,
J. Phys. Chem. Lett.
13
(
27
),
6367
6375
(
2022
).
37.
L.
Zhang
,
X.
Ren
,
X.
Zhao
,
Y.
Zhu
,
R.
Pang
,
P.
Cui
,
Y.
Jia
,
S.
Li
, and
Z.
Zhang
,
Nano Lett.
22
(
9
),
3744
3750
(
2022
).
38.
T.
Sun
,
Z.
Tang
,
W.
Zang
,
Z.
Li
,
J.
Li
,
Z.
Li
,
L.
Cao
,
J. S.
Dominic Rodriguez
,
C. O. M.
Mariano
,
H.
Xu
,
P.
Lyu
,
X.
Hai
,
H.
Lin
,
X.
Sheng
,
J.
Shi
,
Y.
Zheng
,
Y.-R.
Lu
,
Q.
He
,
J.
Chen
,
K. S.
Novoselov
,
C.-H.
Chuang
,
S.
Xi
,
X.
Luo
, and
J.
Lu
,
Nat. Nanotechnol.
18
(
7
),
763
771
(
2023
).
39.
R.
Kronberg
and
K.
Laasonen
,
ACS Catal.
11
(
13
),
8062
8078
(
2021
).
40.
A.
Cao
,
V. J.
Bukas
,
V.
Shadravan
,
Z.
Wang
,
H.
Li
,
J.
Kibsgaard
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
Nat. Commun.
13
(
1
),
2382
(
2022
).
41.
A. B.
Laursen
,
A. S.
Varela
,
F.
Dionigi
,
H.
Fanchiu
,
C.
Miller
,
O. L.
Trinhammer
,
J.
Rossmeisl
, and
S.
Dahl
,
J. Chem. Educ.
89
(
12
),
1595
1599
(
2012
).
42.
H.
Ooka
,
J.
Huang
, and
K. S.
Exner
,
Front. Energy Res.
9
,
654460
(
2021
).
43.
T.
Huang
,
Y.
Si
,
H.-Y.
Wu
,
L.-X.
Xia
,
Y.
Lan
,
W.-Q.
Huang
,
W.-Y.
Hu
, and
G.-F.
Huang
,
Chin. Phys. B
30
(
2
),
027101
(
2021
).
44.
F.
Sultana
,
M.
Mushtaq
,
S.
Althahban
,
T.
Ferdous
,
S.
Firdous
,
A.
Zaman
,
M.
Azeem
, and
Q.
Yang
,
J. Electrochem. Soc.
169
(
11
),
116512
(
2022
).

Supplementary Material

You do not currently have access to this content.