The safety and cycling stability of potassium-ion batteries are of paramount importance. This study investigates a class of phosphate electrolytes with different alkyl chains to understand the correlation between electrochemical properties and alkyl chains. Based on the traditional trimethyl phosphate, the impact of structural modifications on performance improvement was explored in a single-salt, single-solvent environment matched with 1 M bis(fluorosulfonyl)imide potassium salt (KFSI). The research findings indicate that appropriately altering the alkyl chain structure of the phosphate [1 M KFSI-tripropyl phosphate (TPP)] can enhance its electrochemical performance. Through characterization and calculations, it was revealed that TPP's weak solvation and steric hindrance properties favor the formation of a robust interphase on the electrode. Coupling with its excellent ion conductivity, the 1 M KFSI-TPP electrolyte enables good cycling stability of Kǁgraphite, KǁPrussian blue (PB), and PBǁgraphite full-cell configurations. This study provides essential guiding principles for electrolyte design and offers valuable insights into the molecular-level design of safe electrolytes.

1.
L.
Qin
,
Y.
Lei
,
H. W.
Wang
,
J. H.
Dong
,
Y. Y.
Wu
,
D. Y.
Zhai
,
F. Y.
Kang
,
Y.
Tao
, and
Q. H.
Yang
,
Adv. Energy Mater.
9
(
29
),
1901427
(
2019
).
2.
W.
Zhang
,
Y.
Liu
, and
Z.
Guo
,
Sci. Adv.
5
(
5
),
eaav7412
(
2019
).
3.
S.
Dhir
,
S.
Wheeler
,
I.
Capone
, and
M.
Pasta
,
Chem
6
(
10
),
2442
2460
(
2020
).
4.
T.
Hosaka
,
K.
Kubota
,
A. S.
Hameed
, and
S.
Komaba
,
Chem. Rev.
120
(
14
),
6358
6466
(
2020
).
5.
L.
Fan
,
Y.
Hu
,
A. M.
Rao
,
J.
Zhou
,
Z.
Hou
,
C.
Wang
, and
B.
Lu
,
Small Methods
5
(
12
),
e2101131
(
2021
).
6.
L.
Qin
,
W.
Yang
,
W.
Lv
,
L.
Liu
,
Y.
Lei
,
W.
Yu
,
F.
Kang
,
J. K.
Kim
,
D.
Zhai
, and
Q. H.
Yang
,
Chem. Commun.
54
(
58
),
8032
8035
(
2018
).
7.
X.
Shi
,
Z.
Xu
,
Y.
Tang
,
Y.
Zhao
,
B.
Lu
, and
J.
Zhou
,
Appl. Phys. Lett.
123
(
4
),
041903
(
2023
).
8.
H. W.
Wang
,
D. Y.
Zhai
, and
F. Y.
Kang
,
Energy Environ. Sci.
13
(
12
),
4583
4608
(
2020
).
9.
J. F.
Mao
,
C. Y.
Wang
,
Y.
Lyu
,
R. Z.
Zhang
,
Y. Y.
Wang
,
S. L.
Liu
,
Z. J.
Wang
,
S. L.
Zhang
, and
Z. P.
Guo
,
J. Mater. Chem. A
10
(
37
),
19090
19106
(
2022
).
10.
M.
Zhou
,
P.
Bai
,
X.
Ji
,
J.
Yang
,
C.
Wang
, and
Y.
Xu
,
Adv. Mater.
33
(
7
),
e2003741
(
2021
).
11.
L.
Fan
,
R.
Ma
,
Q.
Zhang
,
X.
Jia
, and
B.
Lu
,
Angew. Chem., Int. Ed.
58
(
31
),
10500
10505
(
2019
).
12.
N.
Xiao
,
W. D.
McCulloch
, and
Y.
Wu
,
J. Am. Chem. Soc.
139
(
28
),
9475
9478
(
2017
).
13.
T.
Hosaka
,
K.
Kubota
,
H.
Kojima
, and
S.
Komaba
,
Chem. Commun.
54
(
60
),
8387
8390
(
2018
).
14.
T.
Hosaka
,
T.
Matsuyama
,
K.
Kubota
,
R.
Tatara
, and
S.
Komaba
,
J. Mater. Chem. A
8
(
45
),
23766
23771
(
2020
).
15.
X. W.
Ou
,
J.
Li
,
X. Y.
Tong
,
G.
Zhang
, and
Y. B.
Tang
,
ACS Appl. Energy Mater.
3
(
10
),
10202
10208
(
2020
).
16.
X. H.
Yi
,
Y. H.
Feng
,
A. M.
Rao
,
J.
Zhou
,
C. X.
Wang
, and
B. A.
Lu
,
Adv. Mater.
35
(
29
),
2302280
(
2023
).
17.
X.
Yi
,
A. M.
Rao
,
J.
Zhou
, and
B.
Lu
,
Nano-Micro Lett.
15
(
1
),
200
(
2023
).
18.
J.
Wen
,
H.
Fu
,
D.
Zhang
,
X.
Ma
,
L.
Wu
,
L.
Fan
,
X.
Yu
,
J.
Zhou
, and
B.
Lu
,
ACS Nano
17
(
16
),
16135
16146
(
2023
).
19.
L.
Qin
,
N.
Xiao
,
J. F.
Zheng
,
Y.
Lei
,
D. Y.
Zhai
, and
Y. Y.
Wu
,
Adv. Energy Mater.
9
(
44
),
1902618
(
2019
).
20.
S.
Li
,
H.
Zhu
,
C.
Gu
,
F.
Ma
,
W.
Zhong
,
M.
Liu
,
H.
Zhang
,
Z.
Zeng
,
S.
Cheng
, and
J.
Xie
,
ACS Energy Lett.
8
,
3467
3475
(
2023
).
21.
L.
Fan
,
H. B.
Xie
,
Y. Y.
Hu
,
Z. M.
Caixiang
,
A. M.
Rao
,
J.
Zhou
, and
B. A.
Lu
,
Energy Environ. Sci.
16
(
1
),
305
315
(
2023
).
22.
Y.
Gao
,
W.
Li
,
B.
Ou
,
S.
Zhang
,
H.
Wang
,
J.
Hu
,
F.
Kang
, and
D.
Zhai
,
Adv. Funct. Mater.
33
,
2305829
(
2023
).
23.
X.
Liu
,
X.
Shen
,
F.
Zhong
,
X.
Feng
,
W.
Chen
,
X.
Ai
,
H.
Yang
, and
Y.
Cao
,
Chem. Commun.
56
(
48
),
6559
6562
(
2020
).
24.
G. F.
Zeng
,
S. L.
Xiong
,
Y. T.
Qian
,
L. J.
Ci
, and
J. K.
Feng
,
J. Electrochem. Soc.
166
(
6
),
A1217
A1222
(
2019
).
25.
Q. F.
Zheng
,
Y.
Yamada
,
R.
Shang
,
S.
Ko
,
Y. Y.
Lee
,
K.
Kim
,
E.
Nakamura
, and
A.
Yamada
,
Nat. Energy
5
(
4
),
291
298
(
2020
).
26.
S.
Liu
,
J.
Mao
,
Q.
Zhang
,
Z.
Wang
,
W. K.
Pang
,
L.
Zhang
,
A.
Du
,
V.
Sencadas
,
W.
Zhang
, and
Z.
Guo
,
Angew. Chem., Int. Ed.
59
(
9
),
3638
3644
(
2020
).
27.
J.
Li
,
Y.
Hu
,
H.
Xie
,
J.
Peng
,
L.
Fan
,
J.
Zhou
, and
B.
Lu
,
Angew. Chem., Int. Ed.
61
(
33
),
e202208291
(
2022
).
28.
Z.
Yu
,
H. S.
Wang
,
X.
Kong
,
W.
Huang
,
Y. C.
Tsao
,
D. G.
Mackanic
,
K. C.
Wang
,
X. C.
Wang
,
W. X.
Huang
,
S.
Choudhury
,
Y.
Zheng
,
C. V.
Amanchukwu
,
S. T.
Hung
,
Y. T.
Ma
,
E. G.
Lomeli
,
J.
Qin
,
Y.
Cui
, and
Z. N.
Bao
,
Nat. Energy
5
(
7
),
526
533
(
2020
).
29.
Z.
Yu
,
P. E.
Rudnicki
,
Z. W.
Zhang
,
Z. J.
Huang
,
H.
Celik
,
S. T.
Oyakhire
,
Y. L.
Chen
,
X.
Kong
,
S. C.
Kim
,
X.
Xiao
,
H. S.
Wang
,
Y.
Zheng
,
G. A.
Kamat
,
M. S.
Kim
,
S. F.
Bent
,
J.
Qin
,
Y.
Cui
, and
Z. N.
Bao
,
Nat. Energy
7
(
1
),
94
106
(
2022
).
30.
K.
Xu
,
Chem. Rev.
104
(
10
),
4303
4417
(
2004
).
31.
Y.
Chen
,
Z.
Yu
,
P.
Rudnicki
,
H.
Gong
,
Z.
Huang
,
S. C.
Kim
,
J. C.
Lai
,
X.
Kong
,
J.
Qin
,
Y.
Cui
, and
Z.
Bao
,
J. Am. Chem. Soc.
143
(
44
),
18703
18713
(
2021
).
32.
T. D.
Pham
and
K. K.
Lee
,
Small
17
(
20
),
e2100133
(
2021
).
33.
T. D.
Pham
,
A.
Bin Faheem
,
J.
Kim
,
H. M.
Oh
, and
K. K.
Lee
,
Small
18
(
14
),
e2107492
(
2022
).
34.
G. W. T. M. J.
Frisch
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian'16 {R}evision {B}.01 (
Gaussian, Inc.
,
Wallingford CT
,
2019
); available at https://gaussian.com/citation_b01/.
35.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
(
5
),
580
592
(
2012
).
36.
J.
Zhang
and
T.
Lu
,
Phys. Chem. Chem. Phys.
23
(
36
),
20323
20328
(
2021
).
37.
P.
Peljo
and
H. H.
Girault
,
Energy Environ. Sci.
11
(
9
),
2306
2309
(
2018
).
38.
Y.
Hu
,
L.
Fan
,
A. M.
Rao
,
W.
Yu
,
C.
Zhuoma
,
Y.
Feng
,
Z.
Qin
,
J.
Zhou
, and
B.
Lu
,
Natl. Sci. Rev.
9
(
10
),
nwac134
(
2022
).
39.
Y.
Zhao
,
T.
Zhou
,
M.
Mensi
,
J. W.
Choi
, and
A.
Coskun
,
Nat. Commun.
14
(
1
),
299
(
2023
).
40.
P.
Li
,
H.
Zhang
,
J.
Lu
, and
G.
Li
,
Angew. Chem., Int. Ed.
62
(
10
),
e202216312
(
2023
).
41.
L. A.
Schkeryantz
,
J. F.
Zheng
,
W. D.
McCulloch
,
L.
Qin
,
S. W.
Zhang
,
C. E.
Moore
, and
Y. Y.
Wu
,
Chem. Mater.
32
(
24
),
10423
10434
(
2020
).
42.
L.
Fan
,
S.
Chen
,
R.
Ma
,
J.
Wang
,
L.
Wang
,
Q.
Zhang
,
E.
Zhang
,
Z.
Liu
, and
B.
Lu
,
Small
14
(
30
),
e1801806
(
2018
).

Supplementary Material

You do not currently have access to this content.