Photonic biosensors based on photonic integrated circuits (PICs) and microfluidic channels (MFCs) have become the subject of intensive research for point-of-care (POC) device applications. In the presented work, we demonstrate the possibility of identifying the complex refractive index (RI) of analyzed liquids through the optimization of the geometry configuration of MFCs under PICs by experimental and numerical approaches. Our results suggest that the real and imaginary parts of the RI for analytes under study can be determined from spectrum of devices with optimized MFCs width. This work paves the way for promising opportunities to identify the presence and concentration of biological markers by using RI sensors for in situ POC applications.

1.
S.
Nayak
,
N. R.
Blumenfeld
,
T.
Laksanasopin
, and
S. K.
Sia
, “
Point-of-care diagnostics: Recent developments in a connected age
,”
Anal. Chem.
89
,
102
123
(
2017
).
2.
C. D.
Chin
,
V.
Linder
, and
S. K.
Sia
, “
Commercialization of microfluidic point-of-care diagnostic devices
,”
Lab Chip
12
,
2118
2134
(
2012
).
3.
J.
Wang
,
S. A.
Maier
, and
A.
Tittl
, “
Trends in nanophotonics-enabled optofluidic biosensors
,”
Adv. Opt. Mater.
10
,
2102366
(
2022
).
4.
D. J.
Blumenthal
,
R.
Heideman
,
D.
Geuzebroek
,
A.
Leinse
, and
C.
Roeloffzen
, “
Silicon nitride in silicon photonics
,”
Proc. IEEE
106
,
2209
2231
(
2018
).
5.
J. T.
Kindt
and
R. C.
Bailey
, “
Biomolecular analysis with microring resonators: Applications in multiplexed diagnostics and interaction screening
,”
Curr. Opin. Chem. Biol.
17
,
818
826
(
2013
).
6.
A.
Kuzin
,
V.
Chernyshev
,
V.
Kovalyuk
,
P.
An
,
A.
Golikov
,
R.
Ozhegov
,
D.
Gorin
,
N.
Gippius
, and
G.
Goltsman
, “
Hybrid nanophotonic–microfluidic sensor for highly sensitive liquid and gas analyses
,”
Opt. Lett.
47
,
2358
2361
(
2022
).
7.
T.
Sharma
,
J.
Wang
,
B. K.
Kaushik
,
Z.
Cheng
,
R.
Kumar
,
Z.
Wei
, and
X.
Li
, “
Review of recent progress on silicon nitride-based photonic integrated circuits
,”
IEEE Access
8
,
195436
195446
(
2020
).
8.
H.
Li
and
X.
Fan
, “
Characterization of sensing capability of optofluidic ring resonator biosensors
,”
Appl. Phys. Lett.
97
,
011105
(
2010
).
9.
T.
Ermatov
,
R. E.
Noskov
,
A. A.
Machnev
,
I.
Gnusov
,
V.
Atkin
,
E. N.
Lazareva
,
S. V.
German
,
S. S.
Kosolobov
,
T. S.
Zatsepin
,
O. V.
Sergeeva
et al, “
Multispectral sensing of biological liquids with hollow-core microstructured optical fibres
,”
Light. Sci. Appl.
9
,
173
(
2020
).
10.
R.
Dwivedi
,
A.
Kumar
, and
S. M.
Tripathi
, “
Ultra high sensitive refractive index sensor using a metal under-clad ridge waveguide modal interferometer near the dispersion turning point
,”
IEEE Sens. J.
21
,
4674
4681
(
2021
).
11.
A.
Pandey
,
P.
Gupta
,
K.
Vairagi
, and
S. K.
Mondal
, “
Packaged negative axicon optical fiber probe and bessel beam interferometry for refractive index measurement of hazardous liquid samples
,”
J. Lightwave Technol.
37
,
6121
6126
(
2019
).
12.
X.
Zhang
,
C.
Zhou
,
Y.
Luo
,
Z.
Yang
,
W.
Zhang
,
L.
Li
,
P.
Xu
,
P.
Zhang
, and
T.
Xu
, “
High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses
,”
Opt. Express
30
,
3866
3875
(
2022
).
13.
W.
Cheng
,
X.
Sun
,
S.
Ye
,
B.
Yuan
,
Y.
Sun
,
J. H.
Marsh
, and
L.
Hou
, “
Sidewall grating slot waveguide microring resonator biochemical sensor
,”
Opt. Lett.
48
,
5113
5116
(
2023
).
14.
Z.
Zhang
,
J.
Yang
,
X.
He
,
J.
Zhang
,
J.
Huang
,
D.
Chen
, and
Y.
Han
, “
Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator
,”
Sensors
18
,
116
(
2018
).
15.
H.
Li
,
L.
Wu
,
Y.
Jin
, and
A.
Wu
, “
High sensitivity refractive index sensor based on trapezoidal subwavelength grating slot microring resonator
,”
IEEE Photonics J.
15
,
1
(
2023
).
16.
N. B.
Arnfinnsdottir
,
C. A.
Chapman
,
R. C.
Bailey
,
A.
Aksnes
, and
B. T.
Stokke
, “
Impact of silanization parameters and antibody immobilization strategy on binding capacity of photonic ring resonators
,”
Sensors
20
,
3163
(
2020
).
17.
G. G.
Morbioli
,
N. C.
Speller
, and
A. M.
Stockton
, “
A practical guide to rapid-prototyping of pdms-based microfluidic devices: A tutorial
,”
Anal. Chim. Acta
1135
,
150
174
(
2020
).
18.
A.
Kuzin
,
V.
Chernyshev
,
V.
Kovalyuk
,
P.
An
,
A.
Golikov
,
G.
Goltsman
, and
D.
Gorin
, “
In situ monitoring of layer-by-layer assembly surface modification of nanophotonic-microfluidic sensor
,”
Anal. Chem.
94
,
14517
14521
(
2022
).
19.
A.
Kuzin
,
V.
Kovalyuk
,
A.
Golikov
,
A.
Prokhodtsov
,
A.
Marakhin
,
S.
Ferrari
,
W.
Pernice
,
N.
Gippius
, and
G.
Goltsman
, “
Efficiency of focusing grating couplers versus taper length and angle
,”
J. Phys.: Conf. Ser.
1410
,
012181
(
2019
).
20.
F.
Glover
and
J.
Goulden
, “
Relationship between refractive index and concentration of solutions
,”
Nature
200
,
1165
1166
(
1963
).
21.
G.
Van Baelen
,
S.
Vreysen
,
V.
Gerbaud
,
I.
Rodriguez-Donis
,
J.
Geens
, and
B.
Janssens
, “
Isopropyl alcohol recovery by heteroazeotropic batch distillation
,” in
OATAO
(
2010
).
22.
V. M.
Passaro
,
B.
Troia
,
M. L.
Notte
, and
F.
De Leonardis
, “
Photonic resonant microcavities for chemical and biochemical sensing
,”
RSC Adv.
3
,
25
44
(
2013
).
23.
I. M.
White
and
X.
Fan
, “
On the performance quantification of resonant refractive index sensors
,”
Opt. Express
16
,
1020
1028
(
2008
).
24.
G. M.
Hale
and
M. R.
Querry
, “
Optical constants of water in the 200-nm to 200-μm wavelength region
,”
Appl. Opt.
12
,
555
563
(
1973
).
25.
A.
Kuzin
,
V.
Chernyshev
,
V.
Kovalyuk
,
P.
An
,
A.
Golikov
,
S.
Svyatodukh
,
S.
Perevoschikov
,
I.
Florya
,
A.
Schulga
,
S.
Deyev
et al, “
Real-time surface functionalization of a nanophotonic sensor for liquid biopsy
,”
Appl. Phys. Lett.
123
,
193702
(
2023
).

Supplementary Material

You do not currently have access to this content.