P-i-N and Schottky P-i-N diamond diodes are a promising technology for high-power limiters. Receivers, solid-state amplifiers, and detectors commonly use P-i-N and/or Schottky diodes for protection from high power incident signals. Here, we report on the RF power handling and power dissipation capability of diamond P-i-N and Schottky P-i-N diodes. We fabricate P-i-N diodes as vertical structures, with both majority and minority carriers involved in charge transport. Similarly, we fabricate vertical Schottky P-i-N diodes, with the doping in the n-layer reduced compared to P-i-N diodes such that the n-layer becomes fully depleted during operation, resulting in a majority-carrier device with a fast recovery time. Both P-i-N and Schottky P-i-N diodes were packaged in shunt-configuration and matched for 3 GHz operation, with a small signal insertion loss of ∼1.25 dB. P-i-N diodes operated up to 40 dBm before failing nondestructively at 45 dBm, demonstrating power dissipation handling that exceeds that of commercially available Si P-i-N diodes by more than a factor of five. Schottky P-i-N diodes operated up to 49 dBm before non-recoverable failure at 50 dBm.

1.
J.
Jan Isberg
,
E.
Hammersberg
,
T.
Johansson
,
D. J.
Wikstrom
,
A.
Twitchen
,
J.
Whitehead
,
S. E.
Coe
, and
A.
Scarsbrook
, “
High carrier mobility in single-crystal plasma-deposited diamond
,”
Science
297
,
1670
1672
(
2002
).
2.
N.
Donato
,
N.
Rouger
,
J.
Pernot
,
G.
Longobardi
, and
F.
Udrea
, “
Diamond power devices: State of the art, modelling, figures of merit and future perspective
,”
J. Phys. D
53
,
093001
(
2019
).
3.
R. F.
Bilotta
, “
Receiver protectors: A technology update
,”
Microwave J.
40
(
8
),
90
94
(
1997
).
4.
S. C.
Bera
, “
Microwave limiters
,” in
Microwave Active Devices and Circuits for Communication
(
Springer
,
Singapore
,
2019
), pp.
479
499
.
5.
R.
Bilotta
, see https://www.cpii.com/docs/related/4/RP%20Tech%20Art.pdf for “
Receiver protector theory of operation
,” Communications & Power Industries; accessed Jan. 2020.
6.
R.
Kaul
, “
Microwave limiters
,” in
Encyclopedia of RF and Microwave Engineering
(
John Wiley & Sons, Inc.
2005
).
7.
D. G.
Smith
,
D. D.
Heston
, and
D. L.
Allen
, “
Designing high-power limiter circuits with GaAs PIN diodes
,” in
IEEE MTT-S International Microwave Symposium Digest (Cat. No. 99CH36282)
(
IEEE
,
1999
), Vol.
1
, pp.
329
332
.
8.
F.
Yanmin
, “
The power handling capability of larger power microwave active limiter
,” in
2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (ICMMT 2000) (Cat. No. 00EX364)
(
IEEE
,
2000
), pp.
572
574
.
9.
See https://www.digikey.com/en/htmldatasheets/production/1369160/0/0/1/ma4l-madl-series for “MA4L & MADL-series silicon limiter diodes.”
10.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
et al, “
Ultrawide‐bandgap semiconductors: Research opportunities and challenges
,”
Adv. Elect. Mater.
4
(
1
),
1600501
(
2018
).
11.
H.
Surdi
,
M. F.
Ahmad
,
H.
Surdi
,
F.
Koeck
,
R. J.
Nemanich
,
S. M.
Goodnick
, and
T. J.
Thornton
, “
RF characterization of diamond Schottky p-i-n diodes for receiver protector applications
,”
IEEE Microwave Wireless Compon. Lett.
30
,
1141
1144
(
2020
).
12.
S. M.
Valappil
,
S.
Ohmagari
,
A.
Zkria
,
P.
Sittimart
,
E.
Abubakr
,
H.
Kato
, and
T.
Yoshitake
, “
Nanocarbon ohmic electrodes fabricated by coaxial arc plasma deposition for phosphorus-doped diamond electronics application
,”
AIP Adv.
12
,
085007
(
2022
).
13.
F. A.
Koeck
,
M.
Benipal
, and
R. J.
Nemanich
, “
Electrical contact considerations for diamond electron emission diodes
,”
Diamond Relat. Mater.
101
,
107607
(
2020
).
14.
E.
Amonoo
,
V.
Jha
,
T.
Thornton
,
F. A.
Koeck
,
R. J.
Nemanich
, and
T. L.
Alford
, “
Ohmic contacts to nitrogen-doped nanocarbon layers on diamond (100) surfaces
,”
Diamond Relat. Mater.
135
,
109832
(
2023
).
15.
R.
Hathwar
,
M.
Dutta
,
F. A. M.
Koeck
,
R. J.
Nemanich
,
S.
Chowdhury
, and
S. M.
Goodnick
, “
Temperature dependent simulation of diamond depleted Schottky PIN diodes
,”
J. Appl. Phys.
119
,
225703
(
2016
).
16.
T.
Teraji
,
S.
Koizumi
,
S.
Mita
,
A.
Sawabe
, and
H.
Kanda
, “
Electrical contacts for n-type diamond
,”
Jpn. J. Appl. Phys., Part 2
38
,
L1096
L1098
(
1999
).
17.
H.
Kato
,
H.
Umezawa
,
N.
Tokuda
,
D.
Takeuchi
,
H.
Okushi
, and
S.
Yamasaki
, “
Low specific contact resistance of heavily phosphorus-doped diamond film
,”
Appl. Phys. Lett.
93
,
202103
(
2008
).
18.
H.
Kato
,
D.
Takeuchi
,
N.
Tokuda
,
H.
Umezawa
,
H.
Okushi
, and
S.
Yamasaki
, “
Characterization of specific contact resistance on heavily phosphorus-doped diamond films
,”
Diamond Relat. Mater.
18
,
782
785
(
2009
).
19.
A.
Takemasa
,
K.
Kakushima
,
N.
Sugii
,
A.
Nishiyama
,
K.
Tsutsui
,
K.
Natori
, and
H.
Iwai
, “
Electrical characteristics of n-type diamond contacts with Ti, Ni, NiSi2 and Ni3P electrodes
,”
ECS Trans.
60
,
491
495
(
2014
).
20.
M.
Vojs
,
A.
Kromka
,
T.
Izsák
, and
J.
Skriniarova
, “
Comparative study of electrical properties of nano to polycrystalline diamond films
,”
J. Phys.: Conf. Ser.
100
(
5
),
052097
(
2008
).
21.
R. V.
Garver
,
Microwave Diode Control Devices
(
Artech House, Inc.
,
1976
), p.
109
.
22.
E.
Abubakr
,
S.
Ohmagari
,
A.
Zkria
,
H.
Ikenoue
, and
T.
Yoshitake
, “
Laser-induced novel Ohmic contact formation for effective charge collection in diamond detectors
,”
Mater. Sci. Semicond. Process.
139
,
106370
(
2022
).
23.
T.
Ichibha
,
K.
Hongo
,
I.
Motochi
,
N. W.
Makau
,
G. O.
Amolo
, and
R.
Maezono
, “
Adhesion of electrodes on diamond (111) surface: A DFT study
,”
Diamond Relat. Mater.
81
,
168
175
(
2018
).
24.
E.
Abubakr
,
S.
Ohmagari
,
A.
Zkria
,
H.
Ikenoue
,
J.
Pernot
, and
T.
Yoshitake
, “
Formation of p-n+ diamond homojunctions by shallow doping of phosphorus through liquid emersion excimer laser irradiation
,”
Mater. Res. Lett.
10
(
10
),
666
674
(
2022
).

Supplementary Material

You do not currently have access to this content.