Gas optical emission enhanced by solid initiator (GENS) is designed to support the laser-induced breakdown spectroscopy (LIBS) technique for studying the impact of intense radiation beams on cultural heritage materials. GENS-LIBS generates plasma in the atmosphere using a metal target, which increases sensitivity while lowering laser irradiance. This method is designed to monitor gas emissions from ancient materials during intense radiation analysis, particularly under ion beam irradiation. The study focused on analyzing hydrogen gas emissions from lead white pigments mixed with linseed oil as a binder in paintings. The results show that the GENS-LIBS method has allowed us to quantify the hydrogen emission of lead white-containing paint layers exposed to 10 to 40 μC/cm2 of 3 MeV protons in a specially designed sealed cell. This technique permits the tracking of hydrogen and other light elements, such as oxygen and nitrogen, thus facilitating the follow-up of changes in the material composition of artworks. GENS-LIBS offers a promising method for safely analyzing and preserving valuable cultural heritage artifacts.

1.
L.
Beck
, “
Recent trends in IBA for cultural heritage studies
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
332
,
439
(
2014
).
2.
T.
Calligaro
,
V.
Gonzalez
, and
L.
Pichon
, “
PIXE analysis of historical paintings: Is the gain worth the risk?,
Nucl. Instrum. Methods Phys. Res. Sect. B
363
,
135
(
2015
).
3.
L.
Bertrand
,
S.
Schöeder
,
D.
Anglos
et al, “
Mitigation strategies for radiation damage in the analysis of ancient materials
,”
TrAC Trends Anal. Chem.
66
,
128
(
2015
).
4.
L.
Bertrand
,
S.
Schöder
,
I.
Joosten
et al, “
Practical advances towards safer analysis of heritage samples and objects
,”
TrAC Trends Anal. Chem.
164
,
117078
(
2023
).
5.
V.
Gonzalez
,
T.
Calligaro
,
G.
Wallez
et al, “
Composition and microstructure of the lead white pigment in Masters paintings using HR synchrotron XRD
,”
Microchem. J.
125
,
43
(
2016
).
6.
R. J.
Gettens
,
H.
Kühn
, and
W. T.
Chase
, “
Lead white
,”
Stud. Conserv.
12
(
4
),
125
(
1967
).
7.
P. S.
Chauhan
and
S.
Bhattacharya
, “
Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review
,”
Int. J. Hydrogen Energy
44
(
47
),
26076
(
2019
).
8.
A.
Chtanov
,
M. J. S.
Gal
, and
A. B.
Chemical
, “
Differential optical detection of hydrogen gas in the atmosphere
,”
Sens. Actuators B
79
(
2–3
),
196
(
2001
).
9.
T.
Hübert
,
L.
Boon-Brett
,
G.
Black
et al, “
Hydrogen sensors—A review
,”
Sens. Actuators B
157
(
2
),
329
(
2011
).
10.
A.
Ilnicka
and
J. P. J. P.
Lukaszewicz
, “
Graphene-based hydrogen gas sensors: A review
,”
Processes
8
(
5
),
633
(
2020
).
11.
A.
D'Ulivo
,
M.
Onor
,
E.
Pitzalis
et al, “
Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B
61
(
7
),
797
(
2006
).
12.
K. E.
Eseller
,
F.-Y.
Yueh
, and
J. P.
Singh
, “
Non-intrusive, on-line, simultaneous multi-species impurity monitoring in hydrogen using LIBS
,”
Appl. Phys. B
102
,
963
(
2011
).
13.
D. A.
Cremers
,
A.
Beddingfield
,
R.
Smithwick
et al, “
Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer
,”
Appl. Spectrosc.
66
(
3
),
250
(
2012
).
14.
L.
Dudragne
,
S.
Morel
,
P.
Adam
et al, “
Analysis of polluted surfaces by time resolved laser induced breakdown spectroscopy
,”
Ann. N. Y. Acad. Sci.
891
(
1
),
183
(
1999
).
15.
A.
Ruellan
,
F.
Ville
,
X.
Kleber
et al, “
Understanding white etching cracks in rolling element bearings: The effect of hydrogen charging on the formation mechanisms
,”
Proc. Inst. Mech. Eng., Part J
228
(
11
),
1252
(
2014
).
16.
N.
Thomas
,
B. L.
Ehlmann
,
D.
Anderson
et al, “
Characterization of hydrogen in basaltic materials with laser‐induced breakdown spectroscopy (LIBS) for application to MSL ChemCam data
,”
JGR Planets
123
(
8
),
1996
(
2018
).
17.
R. C.
Wiens
,
S.
Maurice
,
B.
Barraclough
et al, “
The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body unit and combined system tests
,”
Space Sci. Rev.
170
(
1
),
167
(
2012
).
18.
A. J.
Ball
,
V.
Hohreiter
, and
D. W.
Hahn
, “
Hydrogen leak detection using laser-induced breakdown spectroscopy
,”
Appl. Spectrosc.
59
(
3
),
348
(
2005
).
19.
L.
Dudragne
, “
Procede d'identification et d'analyse de polluants en milieu gazeux et sur cible, par spectroscopie de plasma induit par laser
,” Ph.D. thesis,
Université Pierre et Marie Curie
,
Paris
,
1998
.
20.
V.
Detalle
, “
Analyse de l'homogénéité du combustible nucléaire MOX par Spectrométrie d'Emission optique sur Plasma Induit par Laser (SEPIL)
,” Ph.D. thesis,
Université de Lyon
,
Lyon
,
1999
.
21.
X.
Bai
,
F.
Cao
,
V.
Motto-Ros
et al, “
Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study
,”
Spectrochim. Acta Part B
113
,
158
(
2015
).
22.
X.
Bai
,
Q.
Ma
,
V.
Motto-Ros
et al, “
Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure
,”
J. Appl. Phys.
113
(
1
),
013304
(
2013
).
23.
X.
Bai
,
Q.
Ma
,
M.
Perrier
et al, “
Experimental study of laser-induced plasma: Influence of laser fluence and pulse duration
,”
Spectrochim. Acta Part B
87
,
27
(
2013
).
24.
V.
Gonzalez
,
G.
Wallez
,
T.
Calligaro
et al, “
Synthesizing lead white pigments by lead corrosion: New insights into the ancient manufacturing processes
,”
Corros. Sci.
146
,
10
(
2019
).
25.
See https://www.nist.gov/pml/atomic-spectra-database for “
NIST Atomic Spectra Database
.”
26.
M.
Castillejo
,
M.
Martín
,
M.
Oujja
et al, “
Analytical study of the chemical and physical changes induced by KrF laser cleaning of tempera paints
,”
Anal. Chem.
74
(
18
),
4662
(
2002
).
27.
M.
Chappé
,
J.
Hildenhagen
,
K.
Dickmann
et al, “
Laser irradiation of medieval pigments at IR, VIS and UV wavelengths
,”
J. Cult. Heritage
4
,
264
(
2003
).
28.
J.
Hildenhagen
,
M.
Chappé
, and
K.
Dickmann
, “
Reaction of historical colours and their components irradiated at different Nd: YAG laser wavelengths (ω, 2ω, 3ω, 4ω)
,” in
Lasers in the Conservation of Artworks: LACONA V Proceedings
(
Springer
,
2005
), pp.
297
301
.
29.
M.
Lopez
, “
Évaluation et développement d'une technique de nettoyage des peintures par procédé d'interaction laser-matière
,” Ph.D. thesis (
CY Cergy Paris Université
,
2020
).
You do not currently have access to this content.