Theoretical explanation of the super-resolution imaging by contact microspheres created a point of attraction for nanoimaging research during the last decade with many models proposed, yet its origin remains largely elusive. Using a classical double slit object, the key factors responsible for this effect are identified by an ab initio imaging model comprising object illumination, wave scattering, and image reconstruction from the diffracted far fields. The scattering is found by a full-wave solution of the Maxwell equations. The formation of super-resolved images relies on coherent effects, including the light scattering into the waves circulating inside the microsphere and their re-illumination of the object. Achieving the super-resolution of the double slit requires a wide illumination cone as well as a deeply sub-wavelength object-to-microsphere separation. The resultant image has a significantly better resolution as compared to that from the incoherent imaging theory.

1.
Z.
Wang
,
W.
Guo
,
L.
Li
,
B.
Luk'yanchuk
,
A.
Khan
,
Z.
Liu
,
Z.
Chen
, and
M.
Hong
, “
Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope
,”
Nat. Commun.
2
,
218
(
2011
).
2.
L. A.
Krivitsky
,
J. J.
Wang
,
Z.
Wang
, and
B.
Luk'yanchuk
, “
Locomotion of microspheres for super-resolution imaging
,”
Sci. Rep.
3
,
3501
(
2013
).
3.
A.
Darafsheh
,
N. I.
Limberopoulos
,
J. S.
Derov
,
D. E.
Walker
, Jr.
, and
V. N.
Astratov
, “
Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies
,”
Appl. Phys. Lett.
104
,
061117
(
2014
).
4.
L.
Li
,
W.
Guo
,
Y.
Yan
,
S.
Lee
, and
T.
Wang
, “
Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy
,”
Light
2
,
e104
(
2013
).
5.
F.
Wang
,
L.
Liu
,
H.
Yu
,
Y.
Wen
,
P.
Yu
,
Z.
Liu
,
Y.
Wang
, and
W. J.
Li
, “
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
,”
Nat. Commun.
7
,
13748
(
2016
).
6.
Y.
Yan
,
L.
Li
,
C.
Feng
,
W.
Guo
,
S.
Lee
, and
M.
Hong
, “
Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum
,”
ACS Nano
8
,
1809
1816
(
2014
).
7.
B.
Jin
,
A. R.
Jean
,
A. V.
Maslov
, and
V. N.
Astratov
, “
Ball lens-assisted cellphone imaging with submicron resolution
,”
Laser Photonics Rev.
17
,
2300146
(
2023
).
8.
K. W.
Allen
,
N.
Farahi
,
Y.
Li
,
N. I.
Limberopoulos
,
D. E.
Walker
, Jr.
,
A. M.
Urbas
,
V.
Liberman
, and
V. N.
Astratov
, “
Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis
,”
Ann. Phys.
527
,
513
522
(
2015
).
9.
A.
Brettin
,
F.
Abolmaali
,
K. F.
Blanchette
,
C. L.
McGinnis
,
Y. E.
Nesmelov
,
N. I.
Limberopoulos
,
D. E.
Walker
, Jr.
,
I.
Anisimov
,
A. M.
Urbas
,
L.
Poffo
,
A. V.
Maslov
, and
V. N.
Astratov
, “
Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces
,”
Appl. Phys. Lett.
114
,
131101
(
2019
).
10.
V. N.
Astratov
,
Y. B.
Sahel
,
Y. C.
Eldar
,
L.
Huang
,
A.
Ozcan
,
N.
Zheludev
,
J.
Zhao
,
Z.
Burns
,
Z.
Liu
,
E.
Narimanov
,
N.
Goswami
,
G.
Popescu
,
E.
Pfitzner
,
P.
Kukura
,
Y.-T.
Hsiao
,
C.-L.
Hsieh
,
B.
Abbey
,
A.
Diaspro
,
A.
LeGratiet
,
P.
Bianchini
,
N. T.
Shaked
,
B.
Simon
,
N.
Verrier
,
M.
Debailleul
,
O.
Haeberle
,
S.
Wang
,
M.
Liu
,
Y.
Bai
,
J.-X.
Cheng
,
B. S.
Kariman
,
K.
Fujita
,
M.
Sinvani
,
Z.
Zalevsky
,
X.
Li
,
G.-J.
Huang
,
S.-W.
Chu
,
O.
Tzang
,
D.
Hershkovitz
,
O.
Cheshnovsky
,
M. J.
Huttunen
,
S. G.
Stanciu
,
V. N.
Smolyaninova
,
I. I.
Smolyaninov
,
U.
Leonhardt
,
S.
Sahebdivan
,
Z.
Wang
,
B.
Luk'yanchuk
,
L.
Wu
,
A. V.
Maslov
,
B.
Jin
,
C. R.
Simovski
,
S.
Perrin
,
P.
Montgomery
, and
S.
Lecler
, “
Roadmap on label-free super-resolution imaging
,”
Laser Photonics Rev.
17
,
2200029
(
2023
).
11.
A. V.
Maslov
and
V. N.
Astratov
, “
Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets
,”
Phys. Rev. Appl.
11
,
064004
(
2019
).
12.
C. J. R.
Sheppard
, “
Resolution and super-resolution
,”
Microsc. Res. Tech.
80
,
590
598
(
2017
).
13.
Y.
Duan
,
G.
Barbastathis
, and
B.
Zhang
, “
Classical imaging theory of a microlens with super-resolution
,”
Opt. Lett.
38
,
2988
2990
(
2013
).
14.
V. M.
Sundaram
and
S.-B.
Wen
, “
Analysis of deep sub-micron resolution in microsphere based imaging
,”
Appl. Phys. Lett.
105
,
204102
(
2014
).
15.
T. X.
Hoang
,
Y.
Duan
,
X.
Chen
, and
G.
Barbastathis
, “
Focusing and imaging in microsphere-based microscopy
,”
Opt. Express
23
,
12337
12353
(
2015
).
16.
A. V.
Maslov
and
V. N.
Astratov
, “
Imaging of sub-wavelength structures radiating coherently near microspheres
,”
Appl. Phys. Lett.
108
,
051104
(
2016
).
17.
R.
Heydarian
and
C. R.
Simovski
, “
Non-resonant subwavelength imaging by dielectric microparticles
,”
Photonics Nanostruct.
46
,
100950
(
2021
).
18.
S.
Zhou
,
Y.
Deng
,
W.
Zhou
,
M.
Yu
,
H. P.
Urbach
, and
Y.
Wu
, “
Effects of whispering gallery mode in microsphere super-resolution imaging
,”
Appl. Phys. B
123
,
236
(
2017
).
19.
Y.
Ben-Aryeh
, “
Increase of resolution by use of microspheres related to complex Snell's law
,”
J. Opt. Soc. Am. A
33
,
2284
2288
(
2016
).
20.
R.
Boudoukha
,
S.
Perrin
,
A.
Demagh
,
P.
Montgomery
,
N.-E.
Demagh
, and
S.
Lecler
, “
Near- to far-field coupling of evanescent waves by glass microspheres
,”
Photonics
8
,
73
(
2021
).
21.
S.
Perrin
,
R.
Pierron
,
P.
Gerard
,
P.
Montgomery
, and
S.
Lecler
, “
Miniaturized microsphere-assisted microscopy
,”
Appl. Phys. Lett.
122
,
161108
(
2023
).
22.
A. R.
Bekirov
,
B. S.
Luk'yanchuk
, and
A. A.
Fedyanin
, “
Virtual image within a transparent dielectric sphere
,”
JETP Lett.
112
,
341
345
(
2020
).
23.
S. M.
Mansfield
and
G. S.
Kino
, “
Solid immersion microscope
,”
Appl. Phys. Lett.
57
,
2615
2616
(
1990
).
24.
A. V.
Maslov
,
B.
Jin
, and
V. N.
Astratov
, “
Wave optics of imaging with contact ball lenses
,”
Sci. Rep.
13
,
6688
(
2023
).
25.
M.
Totzeck
and
H. J.
Tiziani
, “
Interference microscopy of sub-λ structures: A rigorous computation method and measurements
,”
Opt. Commun.
136
,
61
74
(
1997
).
26.
I. R.
Çapoğlu
,
C. A.
White
,
J. D.
Rogers
,
H.
Subramanian
,
A.
Taflove
, and
V.
Backman
, “
Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method
,”
Opt. Lett.
36
,
1596
1598
(
2011
).
27.
T.
Pahl
,
L.
Hüser
,
S.
Hagemeier
, and
P.
Lehmann
, “
FEM-based modeling of microsphere-enhanced interferometry
,”
Light
3
,
699
711
(
2022
).
28.
A. V.
Kanaev
,
V. N.
Astratov
, and
W.
Cai
, “
Optical coupling at a distance between detuned spherical cavities
,”
Appl. Phys. Lett.
88
,
111111
(
2006
).
29.
C. A.
Mack
,
Field Guide to Optical Lithography
(
SPIE Press
,
Bellingham, WA
,
2006
).
30.
R.
Malureanu
,
O.
Takayama
,
E.
Shkondin
,
A.
Novitsky
, and
A. V.
Lavrinenko
, “
Microspherical nanoscopy: Is it a reliable technique?
OSA Continuum
3
,
10
19
(
2020
).
You do not currently have access to this content.