A silicon nanocrystal (Si NC) white light-emitting (λ= ∼400–900 nm) thin film with a relatively low resistivity of 1.6 × 104 Ω m has been prepared as an active medium for electrically driven Si light sources. The average size of Si NC is 2.4 ± 0.4 nm. To enhance the light emission efficiency of this low-resistivity Si NC thin film, approach of hydrogen passivation suitable for the traditional high-resistivity (1.2 × 107 Ω m in this work for example) red light-emitting Si NC thin film has been tried and found unavailable unfortunately. Our first principles simulation shows that Si NCs bonded to −O, −NH2, −OH, and −H ligands are responsible for red, green, and blue (RGB) primary color emissions in this white light-emitting sample, respectively. Passivation of the sample in NH3 and H2O atmosphere is then conducted, aiming to increase the number of the RGB light emitters. The light emission is significantly enhanced, with photoluminescence intensity, photoluminescence quantum yield, electroluminescence intensity, and net optical gains increased by factors of 4.6, 4.2, 4.0, and ∼3.0, respectively, after 10-day passivation. Further enhancements are expected for longer passivation.

1.
D.
Miller
, “
Device requirements for optical interconnects to silicon chips
,”
Proc. IEEE
97
,
1166
1185
(
2009
).
2.
D.
Liang
and
J. E.
Bowers
, “
Recent progress in lasers on silicon
,”
Nat. Photonics
4
,
511
517
(
2010
).
3.
H.
Subbaraman
,
X.
Xu
,
A.
Hosseini
,
X.
Zhang
,
Y.
Zhang
,
D.
Kwong
, and
R. T.
Chen
, “
Recent advances in silicon-based passive and active optical interconnects
,”
Opt. Express
23
,
2487
2510
(
2015
).
4.
Z.
Zhou
,
B.
Yin
, and
J.
Michel
, “
On-chip light sources for silicon photonics
,”
Light. Sci. Appl.
4
,
e358
e358
(
2015
).
5.
D.
Thomson
,
A.
Zilkie
,
J. E.
Bowers
,
T.
Komljenovic
,
G. T.
Reed
,
L.
Vivien
,
D.
Marris-Morini
,
E.
Cassan
,
L.
Virot
,
J. M.
Fédéli
,
J. M.
Hartmann
,
J. H.
Schmid
,
D. X.
Xu
,
F.
Boeuf
,
P.
O'Brien
,
G. Z.
Mashanovich
, and
M.
Nedeljkovic
, “
Roadmap on silicon photonics
,”
J. Opt.
18
,
073003
(
2016
).
6.
G. R.
Lin
,
C. J.
Lin
,
C.-K.
Lin
,
L. J.
Chou
, and
Y. L.
Chueh
, “
Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2
,”
J. Appl. Phys.
97
,
094306
(
2005
).
7.
G. R.
Lin
,
C. J.
Lin
, and
H. C.
Kuo
, “
Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array
,”
Appl. Phys. Lett.
91
,
93122
(
2007
).
8.
L.
Pavesi
, “
Routes toward silicon-based lasers
,”
Mater. Today
8
,
18
25
(
2005
).
9.
L.
Pavesi
, “
Silicon-based light sources for silicon integrated circuits
,”
Adv. Opt. Technol.
2008
,
1
12
(
2007
).
10.
L. T.
Canham
, “
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
,”
Appl. Phys. Lett.
57
,
1046
1048
(
1990
).
11.
Y.
Yang
,
G.
Meng
,
X.
Liu
,
X.
Zhu
,
M.
Kong
,
F.
Han
,
X.
Zhao
,
Q.
Xu
, and
L.
Zhang
, “
Synthesis and photoluminescence of Si-related nanowires using porous silicon as Si element source
,”
Cryst. Growth Des.
8
,
1818
1822
(
2008
).
12.
T.
Ono
,
Y.
Xu
,
T.
Sakata
, and
K. I.
Saitow
, “
Designing efficient Si quantum dots and LEDs by quantifying ligand effects
,”
ACS Appl. Mater. Interfaces
14
,
1373
1388
(
2022
).
13.
D. C.
Wang
,
J. R.
Chen
,
Y. L.
Li
,
S. C.
Song
,
W. P.
Guo
, and
M.
Lu
, “
Enhancing optical gains in Si nanocrystals via hydrogenation and cerium ion doping
,”
J. Appl. Phys.
116
,
043512
(
2014
).
14.
C.
Zhang
,
D. C.
Wang
,
Z. Q.
Zhou
,
F.
Hu
, and
M.
Lu
, “
Light emissions from a silicon nanocrystal thin film prepared by phase separation of hydrogen silsesquioxane
,”
Physica E
89
,
57
60
(
2017
).
15.
C. M.
Hessel
,
E. J.
Henderson
, and
J. G.
Veinot
, “
Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles
,”
Chem. Mater.
18
(
26
),
6139
6146
(
2006
).
16.
Z. Q.
Xie
,
J.
Zhu
,
M.
Zhang
,
Y. Y.
Zhao
, and
M.
Lu
, “
A combined approach to fabricating Si nanocrystals with high photoluminescence intensity
,”
Appl. Surf. Sci.
255
,
3833
3836
(
2009
).
17.
S.
Li
,
Y. C.
Zhang
,
C.
Zhang
,
X. Y.
Dai
,
Z. Y.
Yu
,
F.
Hu
,
J.
Liu
,
J.
Sun
, and
M.
Lu
, “
High-pressure Ar passivation to enhance the photoluminescence of Si nanocrystals
,”
Physica E
131
,
114680
(
2021
).
18.
R.
Wu
,
E.
Nekovic
,
J.
Collins
,
C. J.
Storey
,
L. T.
Canham
,
M.
Navarro-Cia
, and
A.
Kaplan
, “
Taming non-radiative recombination in Si nanocrystals interlinked in a porous network
,”
Phys. Chem. Chem. Phys.
24
,
13519
13526
(
2022
).
19.
Y. C.
Zhang
,
C.
Zhang
,
S.
Li
,
X.
Dai
,
X.
Ma
,
R.
Gao
,
W.
Zhou
, and
M.
Lu
, “
Enhancing light emission of Si nanocrystals by means of high-pressure hydrogenation
,”
Opt. Express
28
,
23320
23328
(
2020
).
20.
S.
Cheylan
and
R. G.
Elliman
, “
Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix
,”
Appl. Phys. Lett.
78
(
9
),
1225
1227
(
2001
).
21.
M.
Luppi
and
S.
Ossicini
, “
Multiple Si = O bonds at the silicon cluster surface
,”
J. Appl. Phys.
94
,
2130
2132
(
2003
).
22.
M. V.
Wolkin
,
J.
Jorne
, and
P. M.
Fauchet
, “
Electronic states and luminescence in porous silicon quantum dots: The role of oxygen
,”
Phys. Rev. Lett.
82
,
197
2000
(
1999
).
23.
K.
Žídek
,
F.
Trojánek
,
P.
Malý
,
L.
Ondič
,
I.
Pelant
,
K.
Dohnalová
, and
B. R.
Horrocks
, “
Femtosecond luminescence spectroscopy of core states in silicon nanocrystals
,”
Opt. Express
18
(
24
),
25241
25249
(
2010
).
24.
D. C.
Wang
,
H. C.
Hao
,
J. R.
Chen
,
C.
Zhang
,
J.
Zhou
,
J.
Sun
, and
M.
Lu
, “
White light emission and optical gains from a Si nanocrystal thin film
,”
Nanotechnology
26
,
475203
(
2015
).
25.
K.
Akiyama
,
S.
Nojima
,
R.
Takahashi
,
Y.
Matsumoto
, and
H.
Funakubo
, “
MOCVD growth of β-FeSi2 film on modified Si surface by silver and enhancement of luminescence
,”
J. Cryst. Growth
506
,
131
134
(
2019
).
26.
J.
Wang
,
Y.
Zhang
,
H.
Hao
, and
W.
Shen
, “
Structural evolution and effective improvement of emission quantum yields for silicon nanocrystals synthesized by femtosecond laser ablation in HF-contained solution
,”
Nanotechnology
30
,
015705
(
2019
).
27.
H.
Shen
,
Z.
Yu
,
J.
Wang
,
M.
Lu
,
C.
Qiao
,
W. S.
Su
,
Y.
Zheng
,
R.
Zhang
,
Y.
Jia
,
L.
Chen
,
C.
Wang
,
K.
Ho
, and
S.
Wang
, “
Luminescence mechanism in hydrogenated silicon quantum dots with a single oxygen ligand
,”
Nanoscale Adv.
3
,
2245
2251
(
2021
).
28.
Z. Q.
Xie
,
D.
Chen
,
Z. H.
Li
,
Y. Y.
Zhao
, and
M.
Lu
, “
A combined approach to greatly enhancing the photoluminescence of Si nanocrystals embedded in SiO2
,”
Nanotechnology
18
,
115716
(
2007
).
29.
J.
Zhou
,
F. Y.
Ma
,
K.
Chen
,
W.
Zhao
,
R.
Yang
,
C.
Qiao
,
H.
Shen
,
W. S.
Su
,
M.
Lu
,
Y.
Zheng
,
R.
Zhang
,
L.
Chen
, and
S. Y.
Wang
, “
The luminescence mechanism of ligand-induced interface states in silicon quantum dots
,”
Nanoscale Adv.
5
,
3896
3904
(
2023
).
30.
C.
Zhang
,
B.
Yang
,
J.
Chen
,
D.
Wang
,
Y.
Zhang
,
S.
Li
,
X.
Dai
,
S.
Zhang
, and
M.
Lu
, “
All-inorganic silicon white light-emitting device with an external quantum efficiency of 1.0
,”
Opt. Express
28
,
194
204
(
2020
).
31.
Z. Y.
Yu
,
Z. H.
Guo
,
Y. C.
Zhang
,
X.
Zhang
,
Y.
Wang
,
F. Y.
Ma
,
Y.
Liu
,
X. Y.
Xue
,
Q. Y.
Jin
,
J.
Li
,
J.
Sun
,
S. Y.
Wang
,
D. C.
Wang
, and
M.
Lu
, “
Observation of waveguide Fabry-Perot lasing in highly efficient Si nanocrystals
,”
Results Phys.
34
,
105336
(
2022
).
32.
Y. C.
Zhang
,
Z. Y.
Yu
,
X. Y.
Xue
,
F. L.
Wang
,
S.
Li
,
X. Y.
Dai
,
L.
Wu
,
S. Y.
Zhang
,
S. Y.
Wang
, and
M.
Lu
, “
High brightness silicon nanocrystal white light-emitting diode with luminance of 2060 cd/m2
,”
Opt. Express
29
,
34126
34134
(
2021
).
33.
Y. C.
Zhang
,
Z. Y.
Yu
,
F. Y.
Ma
,
X. Y.
Xue
,
K. X.
Liu
,
J.
Sun
,
S. Y.
Wang
, and
M.
Lu
, “
Observation of distributed feedback lasing in silicon nanocrystals under electrical pumping
,”
Results Phys.
39
,
105734
(
2022
).
34.
F.
Neese
, “
The ORCA program system
,”
WIREs Comput. Mol. Sci.
2
,
73
78
(
2011
).
35.
C.
Zhang
,
P.
Zeng
,
W. J.
Zhou
,
Y. C.
Zhang
,
X. P.
He
,
Q. Y.
Jin
,
D. C.
Wang
,
H. T.
Wang
,
S. Y.
Zhang
,
M.
Lu
, and
X.
Wu
, “
Emission characteristics of all-silicon distributed feedback lasers with a wide gain range
,”
IEEE J. Select. Top. Quantum Electron.
26
,
1
7
(
2020
).
36.
D. C.
Wang
,
C.
Zhang
,
P.
Zeng
,
W. J.
Zhou
,
L.
Ma
,
H. T.
Wang
,
Z. Q.
Zhou
,
F.
Hu
,
S. Y.
Zhang
,
M.
Lu
, and
X.
Wu
, “
An all-silicon laser based on silicon nanocrystals with high optical gains
,”
Sci. Bull.
63
,
75
77
(
2018
).
37.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzò
, and
F.
Priolo
, “
Optical gain in silicon nanocrystals
,”
Nature
408
,
440
448
(
2000
).
38.
B. M.
Monroy
,
O.
Crégut
,
M.
Gallart
,
B.
Hönerlage
, and
P.
Gilliot
, “
Optical gain observation on silicon nanocrystals embedded in silicon nitride under femtosecond pumping
,”
Appl. Phys. Lett.
98
,
261108
(
2011
).
39.
J. P.
Perdew
and
M.
Levy
, “
Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities
,”
Phys. Rev. Lett.
51
,
1884
1887
(
1983
).
40.
M. L.
Wagner
and
L. D.
Schmidt
, “
Model catalytic oxidation reactions: Oxygen with H2, NH3, and N2H4 on Rh(111)
,”
J. Phys. Chem.
99
,
805
815
(
1995
).
41.
F. A.
Gianturco
,
E.
Yurtsever
,
M.
Satta
, and
R.
Wester
, “
Modeling ionic reactions at interstellar temperatures: The case of NH2– + H2 ⇔ NH3 + H
,”
J. Phys. Chem. A
123
,
9905
9918
(
2019
).
42.
H.
Zhang
,
F.
Datchi
,
L. M.
Andriambariarijaona
,
G.
Zhang
,
J. A.
Queyroux
,
K.
Beneut
,
M.
Mezouar
, and
S.
Ninet
, “
Melting curve and phase diagram of ammonia monohydrate at high pressure and temperature
,”
J. Chem. Phys.
153
,
154503
(
2020
).
43.
J.
López-Vidrier
,
Y.
Berencén
,
S.
Hernández
,
O.
Blázquez
,
S.
Gutsch
,
J.
Laube
,
D.
Hiller
,
P.
Löper
,
M.
Schnabel
,
S.
Janz
,
M.
Zacharias
, and
B.
Garrido
, “
Charge transport and electroluminescence of silicon nanocrystals/SiO2 superlattices
,”
J. Appl. Phys.
114
(
16
),
163701
(
2013
).
44.
G.
Lucovsky
,
R. J.
Nemanich
, and
J. C.
Knights
, “
Structural interpretation of the vibrational spectra of a-Si: H alloys
,”
Phys. Rev. B.
19
(
4
),
2064
(
1979
).
45.
T.
OH
and
C. K.
Choi
, “
Comparison between SiOC thin film by plasma enhance chemical vapor deposition and SiO2 thin film by Fourier transform infrared spectroscopy
,”
J. Korean Phys. Soc.
56
,
1150
1155
(
2010
).
46.
X.
Chen
,
J.
Liu
,
Y.
Ma
,
P.
Wang
,
X.
Bai
, and
J.
Pan
, “
Large-scale and low-cost fabrication of two functional silica sorbents by vapor condensation induced nanoemulsions and their excellent uptake performance
,”
Chem. Eng. J.
379
,
122364
(
2020
).
47.
A. S.
Levina
,
M. N.
Repkova
,
N. V.
Shikina
,
Z. R.
Ismagilov
,
S. A.
Yashnik
,
D. V.
Semenov
,
Y. I.
Savinovskaya
,
N. A.
Mazurkova
,
I. A.
Pyshnaya
, and
V. F.
Zarytova
, “
Non-agglomerated silicon-organic nanoparticles and their nanocomplexes with oligonucleotides: Synthesis and properties
,”
Beilstein J. Nanotechnol.
9
,
2516
2525
(
2018
).
48.
L.
Cerdan
, “
Variable stripe length method: Influence of stripe length choice on measured optical gain
,”
Opt. Lett.
42
,
5258
5261
(
2017
).

Supplementary Material

You do not currently have access to this content.