With the development of neuromorphic electronics, much effort has been devoted to expand perception, memory, and computing integration capabilities. In this paper, an ionic-based graphene synaptic transistor with long-gate structure has been investigated to mimic memory, learning function and perceive humidity. By harnessing the tunable in-plane-field transport of charge carriers in graphene and ions motion in ion-gel, this transistor mimics various synaptic functionalities, including inhibitory postsynaptic current, excitatory postsynaptic current, paired-pulse facilitation, long-term depression, and long-term potentiation. Under short pules stimuli, the long-gate structure provides our transistor with an inertial assisted re-accumulation, generating two excitatory postsynaptic current peaks and enhanced paired-pule facilitation up to ∼265%. Furthermore, the presence of the long-gate structure enables our transistor to exhibit excellent learning and simulate Ebbinghaus' memory. In addition, physical mechanic about its humidity perception has been analyzed and discussed. This study provides a unique platform for designing high-performance carbon-based artificial synapses enabling integrated functions of sensing, storage, and computation for the neuromorphic system.

1.
Q.
Li
,
T.
Wang
,
Y.
Fang
et al, “
Ultralow power wearable organic ferroelectric device for optoelectronic neuromorphic computing
,”
Nano Lett.
22
(
15
),
6435
6443
(
2022
).
2.
K. A.
Bushra
and
K. S.
Prasad
, “
Based field-effect transistor sensors
,”
Talanta
239
,
123085
(
2022
).
3.
R.
Bhunia
,
E. K.
Boahen
,
D. J.
Kim
et al, “
Neural-inspired artificial synapses based on low-voltage operated organic electrochemical transistors
,”
J. Mater. Chem. C
11
,
7485
(
2023
).
4.
D.
Ohayon
,
V.
Druet
, and
S.
Inal
, “
A guide for the characterization of organic electrochemical transistors and channel materials
,”
Chem. Soc. Rev.
52
,
1001
(
2023
).
5.
V.
Dhawan
and
X. T.
Cui
, “
Carbohydrate based biomaterials for neural interface applications
,”
J. Mater. Chem. B
10
(
25
),
4714
4740
(
2022
).
6.
C.
Zhang
,
R.
Cha
,
P.
Zhang
et al, “
Cellulosic substrate materials with multi-scale building blocks: Fabrications, properties and applications in bioelectronic devices
,”
Chem. Eng. J.
430
,
132562
(
2022
).
7.
W.
Wang
,
Z.
He
,
C.
Di
et al, “
Advances in organic transistors for artificial perception applications
,”
Mater. Today Electron.
3
,
100028
(
2023
).
8.
K. N.
Kim
,
M. J.
Sung
,
H. L.
Park
et al, “
Organic synaptic transistors for bio‐hybrid neuromorphic electronics
,”
Adv. Elect. Mater.
8
(
1
),
2100935
(
2022
).
9.
T.
Das
,
B. K.
Sharma
,
A. K.
Katiyar
et al, “
Graphene-based flexible and wearable electronics
,”
J. Semicond.
39
(
1
),
011007
(
2018
).
10.
S.
Liu
,
X.
He
,
J.
Su
et al, “
A light‐stimulus flexible synaptic transistor based on ion‐gel side‐gated graphene for neuromorphic computing
,”
Adv. Photonics Res.
3
(
11
),
2200174
(
2022
).
11.
C.
Raymond
,
T.
Matthews
, and
R. M.
Horton
, “
The emergence of heat and humidity too severe for human tolerance
,”
Sci. Adv.
6
(
19
),
eaaw1838
(
2020
).
12.
P.
Wolkoff
, “
Indoor air humidity, air quality, and health—An overview
,”
Int. J. Hyg. Environ. Health
221
(
3
),
376
390
(
2018
).
13.
Y.
Choi
,
S.
Oh
,
C.
Qian
et al, “
Vertical organic synapse expandable to 3D crossbar array
,”
Nat. Commun.
11
(
1
),
4595
(
2020
).
14.
Y.
Li
,
Z.
Xuan
,
J.
Lu
et al, “
One transistor one electrolyte‐gated transistor based spiking neural network for power‐efficient neuromorphic computing system
,”
Adv. Funct. Mater.
31
(
26
),
2100042
(
2021
).
15.
Y.
Fu
,
L.
Kong
,
Y.
Chen
et al, “
Flexible neuromorphic architectures based on self-supported multiterminal organic transistors
,”
ACS Appl. Mater. Interfaces
10
(
31
),
26443
26450
(
2018
).
16.
X.
Wang
,
H.
Yang
,
E.
Li
et al, “
Stretchable transistor‐structured artificial synapses for neuromorphic electronics
,”
Small
19
,
2205395
(
2023
).
17.
C.
Ge
,
G.
Li
,
Q.
Zhou
et al, “
Gating-induced reversible HxVO2 phase transformations for neuromorphic computing
,”
Nano Energy
67
,
104268
(
2020
).
18.
D. S.
Liu
,
U.
Khan
,
P.
Li
et al, “
Ion gel coated graphene field effect transistor for humidity sensitive applications
,”
IEEE Sens. J.
21
(
17
),
18483
18487
(
2021
).
19.
S.
Nie
,
Y.
He
,
R.
Liu
et al, “
Low-voltage oxide-based synaptic transistors for spiking humidity detection
,”
IEEE Electron Device Lett.
40
(
3
),
459
462
(
2019
).
20.
L. Q.
Guo
,
J.
Wen
,
L. Q.
Zhu
et al, “
Humidity-dependent synaptic plasticity for proton gated oxide synaptic transistor
,”
IEEE Electron Device Lett.
38
(
9
),
1248
1251
(
2017
).
21.
M.
Nogami
,
R.
Nagao
,
C.
Wong
et al, “
High proton conductivity in porous P2O5–SiO2 glasses
,”
J. Phys. Chem. B
103
(
44
),
9468
9472
(
1999
).
22.
Y.
Daiko
,
T.
Kasuga
, and
M.
Nogami
, “
Proton conduction and pore structure in sol–gel glasses
,”
Chem. Mater.
14
(
11
),
4624
4627
(
2002
).
23.
L. F.
Abbott
and
W. G.
Regehr
, “
Synaptic computation
,”
Nature
431
(
7010
),
796
803
(
2004
).
24.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
et al, “
A million spiking-neuron integrated circuit with a scalable communication network and interface
,”
Science
345
(
6197
),
668
673
(
2014
).
25.
Y.
He
,
Y.
Yang
,
S.
Nie
et al, “
Electric-double-layer transistors for synaptic devices and neuromorphic systems
,”
J. Mater. Chem. C
6
(
20
),
5336
5352
(
2018
).
26.
R. S.
Zucker
and
W. G.
Regehr
, “
Short-term synaptic plasticity
,”
Annu. Rev. Physiol.
64
(
1
),
355
405
(
2002
).
27.
S. J.
Martin
,
P. D.
Grimwood
, and
R. G. M.
Morris
, “
Synaptic plasticity and memory: An evaluation of the hypothesis
,”
Annu. Rev. Neurosci.
23
(
1
),
649
711
(
2000
).
28.
P.
Marracino
,
M.
Liberti
,
G.
d'Inzeo
et al, “
Water response to intense electric fields: A molecular dynamics study
,”
Bioelectromagnetics
36
(
5
),
377
385
(
2015
).
29.
T.
Hayasaka
,
Y.
Kubota
,
Y.
Liu
et al, “
The influences of temperature, humidity, and O2 on electrical properties of graphene FETs
,”
Sens. Actuators, B
285
,
116
122
(
2019
).
30.
S. J.
Park
,
J. Y.
Jeon
, and
T. J.
Ha
, “
Wearable humidity sensors based on bar-printed poly (ionic liquid) for real-time humidity monitoring systems
,”
Sens. Actuators, B
354
,
131248
(
2022
).

Supplementary Material

You do not currently have access to this content.