In this paper, a surface plasmon resonance assisted hybrid photodetector (PD) made of a low bandgap covalent polymeric framework material is experimentally demonstrated. The PD demonstrated a broadband photodetection capability ranging between 350 and 1550 nm with subsecond transients. The fabricated hybrid PD offered a remarkable responsivity and external quantum efficiency of 42.87 A/W and 11 873% at 410 nm, respectively. The peak detectivity is recorded to be 7.43 × 10 13 Jones at 400 nm. Up to 1550 nm, the hybrid PD offered a responsivity > 0.4 A/W, thereby showcasing its efficacy even for the near-infrared signals. The time-dependent photoresponse study estimated the rise time and fall time of the fabricated PD to be approximately 0.31 and 0.22 s, respectively.

1.
H.
Ren
,
J.-D.
Chen
,
Y.-Q.
Li
, and
J.-X.
Tang
, “
Recent progress in organic photodetectors and their applications
,”
Adv. Sci.
8
,
2002418
(
2021
).
2.
J.
Xue
,
Z.
Zhu
,
X.
Xu
,
Y.
Gu
,
S.
Wang
,
L.
Xu
,
Y.
Zou
,
J.
Song
,
H.
Zeng
, and
Q.
Chen
, “
Narrowband perovskite photodetector-based image array for potential application in artificial vision
,”
Nano Lett.
18
,
7628
7634
(
2018
).
3.
S.
Cai
,
X.
Xu
,
W.
Yang
,
J.
Chen
, and
X.
Fang
, “
Materials and designs for wearable photodetectors
,”
Adv. Mater.
31
,
1808138
(
2019
).
4.
L.
Li
,
S.
Ye
,
J.
Qu
,
F.
Zhou
,
J.
Song
, and
G.
Shen
, “
Recent advances in perovskite photodetectors for image sensing
,”
Small
17
,
2005606
(
2021
).
5.
T.
Wang
,
D.
Zheng
,
J.
Zhang
,
J.
Qiao
,
C.
Min
,
X.
Yuan
,
M.
Somekh
, and
F.
Feng
, “
High-performance and stable plasmonic-functionalized formamidinium-based quasi-2D perovskite photodetector for potential application in optical communication
,”
Adv. Funct. Mater.
32
,
2208694
(
2022
).
6.
H.
Guan
,
G.
Mao
,
T.
Zhong
,
T.
Zhao
,
S.
Liang
,
L.
Xing
, and
X.
Xue
, “
A self-powered UV photodetector based on the hydrovoltaic and photoelectric coupling properties of ZnO nanowire arrays
,”
J. Alloys Compd.
867
,
159073
(
2021
).
7.
E. I.
Romadina
,
A. V.
Akkuratov
,
S. D.
Babenko
,
P. M.
Kuznetsov
, and
P. A.
Troshin
, “
New low bandgap polymer for organic near-infrared photodetectors
,”
Thin Solid Films
717
,
138470
(
2021
).
8.
S.
Bag
,
H. S.
Sasmal
,
S. P.
Chaudhary
,
K.
Dey
,
D.
Blatte
,
R.
Guntermann
,
Y.
Zhang
,
M.
Polozij
,
A.
Kuc
,
A.
Shelke
et al, “
Covalent organic framework thin-film photodetectors from solution-processable porous nanospheres
,”
J. Am. Chem. Soc.
145
,
1649
1659
(
2023
).
9.
D.
Bessinger
,
L.
Ascherl
,
F.
Auras
, and
T.
Bein
, “
Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks
,”
J. Am. Chem. Soc.
139
,
12035
12042
(
2017
).
10.
Z.
Wang
,
L. S.
Walter
,
M.
Wang
,
P. S.
Petkov
,
B.
Liang
,
H.
Qi
,
N. N.
Nguyen
,
M.
Hambsch
,
H.
Zhong
,
M.
Wang
et al, “
Interfacial synthesis of layer-oriented 2D conjugated metal–organic framework films toward directional charge transport
,”
J. Am. Chem. Soc.
143
,
13624
13632
(
2021
).
11.
C.-K.
Liu
,
V.
Piradi
,
J.
Song
,
Z.
Wang
,
L.-W.
Wong
,
E.-H.-L.
Tan
,
J.
Zhao
,
X.
Zhu
, and
F.
Yan
, “
2D metal–organic framework Cu3(HHTT)2 films for broadband photodetectors from ultraviolet to mid-infrared
,”
Adv. Mater.
34
,
2204140
(
2022
).
12.
F.
Cao
,
W.
Tian
,
K.
Deng
,
M.
Wang
, and
L.
Li
, “
Self-powered UV–Vis–NIR photodetector based on conjugated-polymer/CsPbBr3 nanowire array
,”
Adv. Funct. Mater.
29
,
1906756
(
2019
).
13.
J. H.
Vella
,
L.
Huang
,
N.
Eedugurala
,
K. S.
Mayer
,
T. N.
Ng
, and
J. D.
Azoulay
, “
Broadband infrared photodetection using a narrow bandgap conjugated polymer
,”
Sci. Adv.
7
,
eabg2418
(
2021
).
14.
Y.
Kang
,
H. J.
Eun
,
H.
Kye
,
D.
Kim
,
J.
Heo
,
J. H.
Kim
, and
B.-G.
Kim
, “
Side-chain engineering of conjugated polymers toward highly efficient near-infrared organic photo-detectors via morphology and dark current management
,”
J. Mater. Chem. C
8
,
7765
7771
(
2020
).
15.
M.
Tanzid
,
A.
Ahmadivand
,
R.
Zhang
,
B.
Cerjan
,
A.
Sobhani
,
S.
Yazdi
,
P.
Nordlander
, and
N. J.
Halas
, “
Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection
,”
ACS Photonics
5
,
3472
3477
(
2018
).
16.
M.
Oshita
,
S.
Saito
, and
T.
Kan
, “
Electromechanically reconfigurable plasmonic photodetector with a distinct shift in resonant wavelength
,”
Microsyst. Nanoeng.
9
,
26
(
2023
).
17.
H. J.
Kaur
, “
Investigation of germanium-based plasmonic-photo-detector improved by dual-absorption method using titanium nitride
,”
J. Opt.
52
,
1818
(
2023
).
18.
M.
Oshita
,
H.
Takahashi
,
Y.
Ajiki
, and
T.
Kan
, “
Reconfigurable surface plasmon resonance photodetector with a mems deformable cantilever
,”
ACS Photonics
7
,
673
679
(
2020
).
19.
H.
Zhang
,
X.
Chen
,
Z.
Zhang
,
K.
Yu
,
W.
Zhu
, and
Y.
Zhu
, “
Highly-crystalline triazine-PDI polymer with an enhanced built-in electric field for full-spectrum photocatalytic phenol mineralization
,”
Appl. Catal., B
287
,
119957
(
2021
).
20.
S.
Halder
,
S.
Roy
, and
C.
Chakraborty
, “
Multicolored and durable electrochromism in water soluble naphthalene and perylene based diimides
,”
Sol. Energy Mater. Sol. Cells
234
,
111429
(
2022
).
21.
S.
Halder
and
C.
Chakraborty
, “
Triazine-based two-dimensional porous covalent organic framework for efficient electrode materials for electrocatalytic hydrogen generation and hybrid supercapacitors
,”
ACS Appl. Eng. Mater.
1
,
1799
1808
(
2023
).
22.
C.
Chakraborty
,
K.
Dana
, and
S.
Malik
, “
Lamination of cationic perylene in montmorillonite nano-gallery: Induced J-aggregated nanostructure with enhanced photophysical and thermogravimetric aspect
,”
J. Phys. Chem. C
116
,
21116
21123
(
2012
).
23.
Y.
Liao
,
J.
Weber
, and
C. F.
Faul
, “
Fluorescent microporous polyimides based on perylene and triazine for highly Co2-selective carbon materials
,”
Macromolecules
48
,
2064
2073
(
2015
).
24.
J.
Wu
,
S.
Di
,
W.
Huang
,
Y.
Wu
,
Q.
Huang
,
X.
Zhao
,
X.
Yu
,
M.
Zhang
,
H.
Ye
, and
Y.
Li
, “
Porous polyimide framework based on perylene and triazine for reversible potassium-ion storage
,”
Mater. Chem. Front.
5
,
7184
7190
(
2021
).
25.
H. M.
Kim
,
H. K.
Jang
,
T. G.
Hwang
,
J. W.
Namgoong
,
J. Y.
Kim
,
S. B.
Yuk
,
J. M.
Lee
, and
J. P.
Kim
, “
Comparative study of the synthetic methods for perylene-based covalent triazine polyimides
,”
Dyes Pigm.
186
,
108968
(
2021
).
26.
S.
Halder
,
S.
Pal
,
P.
Sivasakthi
,
P. K.
Samanta
, and
C.
Chakraborty
, “
Thiazolothiazole-containing conjugated polymer with electrochromism and electrofluorochromism-based dual performance for a flip-flop molecular logic gate
,”
Macromolecules
56
,
2319
2327
(
2023
).
27.
S.
Halder
,
R. P.
Behere
,
N.
Gupta
,
B. K.
Kuila
, and
C.
Chakraborty
, “
Enhancement of the electrochemical performance of a cathodically coloured organic electrochromic material through the formation of hydrogen bonded supramolecular polymer assembly
,”
Sol. Energy Mater. Sol. Cells
245
,
111858
(
2022
).
28.
S. D.
Anwarhussaini
,
H.
Battula
,
P. K. R.
Boppidi
,
S.
Kundu
,
C.
Chakraborty
, and
S.
Jayanty
, “
Photophysical, electrochemical and flexible organic resistive switching memory device application of a small molecule: 7,7-bis (hydroxyethylpiperazino) dicyanoquinodimethane
,”
Org. Electron.
76
,
105457
(
2020
).
29.
J.
Yao
,
Q.
Chen
,
C.
Zhang
,
Z.-G.
Zhang
, and
Y.
Li
, “
Perylene-diimide-based cathode interlayer materials for high performance organic solar cells
,”
SusMat
2
,
243
263
(
2022
).
30.
X.
Gong
,
M.
Tong
,
Y.
Xia
,
W.
Cai
,
J. S.
Moon
,
Y.
Cao
,
G.
Yu
,
C.-L.
Shieh
,
B.
Nilsson
, and
A. J.
Heeger
, “
High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm
,”
Science
325
,
1665
1667
(
2009
).
31.
T.
Fu
,
X.
Yan
,
L.
Ai
,
X.
Zhang
, and
X.
Ren
, “
A Si-based InP/InGaAs nanowire array photodetector operating at telecommunication wavelength
,”
Photonics Nanostruct.-Fundam. Appl.
40
,
100794
(
2020
).
32.
S.
Mathew
,
K. S.
Chandu
,
S.
Halder
,
G.
Polumati
,
C.
Chakraborty
,
P.
Sahatiya
, and
S.
Pal
, “
Band alignment and charge transport study of au nanoparticles decorated over MoS2/MoSe2 hybrid heterostructure for plasmon enhanced photodetection
,”
Mater. Sci. Semicond. Process.
156
,
107302
(
2023
).
33.
Y.
Zhang
,
O.
Pluchery
,
L.
Caillard
,
A.-F.
Lamic-Humblot
,
S.
Casale
,
Y. J.
Chabal
, and
M.
Salmeron
, “
Sensing the charge state of single gold nanoparticles via work function measurements
,”
Nano Lett.
15
,
51
55
(
2015
).
34.
J.
Saroha
,
N.
Lalla
,
M.
Kumar
, and
S. N.
Sharma
, “
Ultrafast transient absorption spectroscopic studies on the impact of growth time on size, stability, and optical characteristics of colloidal gold nanoparticles
,”
Optik
268
,
169759
(
2022
).

Supplementary Material

You do not currently have access to this content.