We demonstrate an order of magnitude reduction in the sensitivity to optical crosstalk for neighboring trapped-ion qubits during simultaneous single-qubit gates driven with individual addressing beams. Gates are implemented via two-photon Raman transitions, where crosstalk is mitigated by offsetting the drive frequencies for each qubit to avoid first-order crosstalk effects from inter-beam two-photon resonance. The technique is simple to implement, and we find that phase-dependent crosstalk due to optical interference is reduced on the most impacted neighbor from a maximal fractional rotation error of 0.185 ( 4 ) without crosstalk mitigation to 0.006 with the mitigation strategy. Furthermore, we characterize first-order crosstalk in the two-qubit gate and avoid the resulting rotation errors for the arbitrary-axis Mølmer–Sørensen gate via a phase-agnostic composite gate. Finally, we demonstrate holistic system performance by constructing a composite CNOT gate using the improved single-qubit gates and phase-agnostic two-qubit gate. This work is done on the Quantum Scientific Computing Open User Testbed; however, our methods are widely applicable for individual addressing Raman gates and impose no significant overhead, enabling immediate improvement for quantum processors that incorporate this technique.

1.
2.
L. K.
Grover
, “
A fast quantum mechanical algorithm for database search
,” arXiv:9605043 [quant-ph] (
1996
).
3.
4.
D.
Aharonov
and
M.
Ben-Or
, in
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing
, STOC'97 (
Association for Computing Machinery
,
New York
,
1997
), pp.
176
188
.
5.
E.
Knill
,
R.
Laflamme
, and
W. H.
Zurek
,
Proc. R. Soc. London, Ser. A
454
,
365
(
1998
).
6.
P.
Aliferis
,
D.
Gottesman
, and
J.
Preskill
,
Quantum Inf. Comput.
6
,
97
165
(
2006
).
7.
Q.
Xu
,
G.
Zheng
,
Y.-X.
Wang
,
P.
Zoller
,
A. A.
Clerk
, and
L.
Jiang
,
npj Quantum Inf.
9
,
78
(
2023
).
8.
C.
Ryan-Anderson
,
N. C.
Brown
,
M. S.
Allman
,
B.
Arkin
,
G.
Asa-Attuah
,
C.
Baldwin
,
J.
Berg
,
J. G.
Bohnet
,
S.
Braxton
,
N.
Burdick
,
J. P.
Campora
,
A.
Chernoguzov
,
J.
Esposito
,
B.
Evans
,
D.
Francois
,
J. P.
Gaebler
,
T. M.
Gatterman
,
J.
Gerber
,
K.
Gilmore
,
D.
Gresh
,
A.
Hall
,
A.
Hankin
,
J.
Hostetter
,
D.
Lucchetti
,
K.
Mayer
,
J.
Myers
,
B.
Neyenhuis
,
J.
Santiago
,
J.
Sedlacek
,
T.
Skripka
,
A.
Slattery
,
R. P.
Stutz
,
J.
Tait
,
R.
Tobey
,
G.
Vittorini
,
J.
Walker
, and
D.
Hayes
, “
Implementing fault-tolerant entangling gates on the five-qubit code and the color code
,” arXiv:2208.01863 [quant-ph] (
2022
).
9.
K.
Rudinger
,
C. W.
Hogle
,
R. K.
Naik
,
A.
Hashim
,
D.
Lobser
,
D. I.
Santiago
,
M. D.
Grace
,
E.
Nielsen
,
T.
Proctor
,
S.
Seritan
,
S. M.
Clark
,
R.
Blume-Kohout
,
I.
Siddiqi
, and
K. C.
Young
,
PRX Quantum
2
,
040338
(
2021
).
10.
C.
Fang
,
Y.
Wang
,
S.
Huang
,
K. R.
Brown
, and
J.
Kim
,
Phys. Rev. Lett.
129
,
240504
(
2022
).
11.
J.
Flannery
,
R.
Matt
,
L.
Huber
,
R.
Oswald
,
K.
Wang
, and
J.
Home
, in
2022 IEEE International Conference on Quantum Computing and Engineering (QCE)
(
IEEE
,
2022
), pp.
816
817
.
12.
K. X.
Wei
,
E.
Magesan
,
I.
Lauer
,
S.
Srinivasan
,
D. F.
Bogorin
,
S.
Carnevale
,
G. A.
Keefe
,
Y.
Kim
,
D.
Klaus
,
W.
Landers
,
N.
Sundaresan
,
C.
Wang
,
E. J.
Zhang
,
M.
Steffen
,
O. E.
Dial
,
D. C.
McKay
, and
A.
Kandala
,
Phys. Rev. Lett.
129
,
060501
(
2022
).
13.
D. M.
Debroy
,
M.
Li
,
S.
Huang
, and
K. R.
Brown
,
Quantum Sci. Technol.
5
,
034002
(
2020
).
14.
R.
Wang
,
P.
Zhao
,
Y.
Jin
, and
H.
Yu
,
Appl. Phys. Lett.
121
,
152602
(
2022
).
15.
P.
Zhao
,
K.
Linghu
,
Z.
Li
,
P.
Xu
,
R.
Wang
,
G.
Xue
,
Y.
Jin
, and
H.
Yu
,
PRX Quantum
3
,
020301
(
2022
).
16.
C.
Figgatt
,
A.
Ostrander
,
N. M.
Linke
,
K. A.
Landsman
,
D.
Zhu
,
D.
Maslov
, and
C.
Monroe
,
Nature
572
,
368
(
2019
).
18.
M.
Sarovar
,
T.
Proctor
,
K.
Rudinger
,
K.
Young
,
E.
Nielsen
, and
R.
Blume-Kohout
,
Quantum
4
,
321
(
2020
).
19.
Y.
Ding
,
P.
Gokhale
,
S.
Lin
,
R.
Rines
,
T.
Propson
, and
F. T.
Chong
, in
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
(
IEEE Computer Society
,
Los Alamitos, CA
,
2020
), pp.
201
214
.
20.
P.
Parrado-Rodríguez
,
C.
Ryan-Anderson
,
A.
Bermudez
, and
M.
Müller
,
Quantum
5
,
487
(
2021
).
21.
V.
Tripathi
,
H.
Chen
,
M.
Khezri
,
K.-W.
Yip
,
E.
Levenson-Falk
, and
D. A.
Lidar
,
Phys. Rev. Appl.
18
,
024068
(
2022
).
22.
S. M.
Clark
,
D.
Lobser
,
M. C.
Revelle
,
C. G.
Yale
,
D.
Bossert
,
A. D.
Burch
,
M. N.
Chow
,
C. W.
Hogle
,
M.
Ivory
,
J.
Pehr
,
B.
Salzbrenner
,
D.
Stick
,
W.
Sweatt
,
J. M.
Wilson
,
E.
Winrow
, and
P.
Maunz
,
IEEE Trans. Quantum Eng.
2
,
3102832
(
2021
).
23.
S.
Crain
,
E.
Mount
,
S.
Baek
, and
J.
Kim
,
Appl. Phys. Lett.
105
,
181115
(
2014
).
24.
C.-Y.
Shih
,
S.
Motlakunta
,
N.
Kotibhaskar
,
M.
Sajjan
,
R.
Hablützel
, and
R.
Islam
,
npj Quantum Inf.
7
,
57
(
2021
).
26.
C.
Shen
,
Z.-X.
Gong
, and
L.-M.
Duan
,
Phys. Rev. A
88
,
052325
(
2013
).
27.
T. M.
Graham
,
Y.
Song
,
J.
Scott
,
C.
Poole
,
L.
Phuttitarn
,
K.
Jooya
,
P.
Eichler
,
X.
Jiang
,
A.
Marra
,
B.
Grinkemeyer
,
M.
Kwon
,
M.
Ebert
,
J.
Cherek
,
M. T.
Lichtman
,
M.
Gillette
,
J.
Gilbert
,
D.
Bowman
,
T.
Ballance
,
C.
Campbell
,
E. D.
Dahl
,
O.
Crawford
,
N. S.
Blunt
,
B.
Rogers
,
T.
Noel
, and
M.
Saffman
,
Nature
604
,
457
(
2022
).
28.
C.
Piltz
,
T.
Sriarunothai
,
A. F.
Varón
, and
C.
Wunderlich
,
Nat. Commun.
5
,
4679
(
2014
).
29.
F.
Mintert
and
C.
Wunderlich
,
Phys. Rev. Lett.
87
,
257904
(
2001
).
30.
P.
Staanum
and
M.
Drewsen
,
Phys. Rev. A
66
,
040302
(
2002
).
31.
P. C.
Haljan
,
P. J.
Lee
,
K.-A.
Brickman
,
M.
Acton
,
L.
Deslauriers
, and
C.
Monroe
,
Phys. Rev. A
72
,
062316
(
2005
).
32.
S.
Weidt
,
J.
Randall
,
S. C.
Webster
,
K.
Lake
,
A. E.
Webb
,
I.
Cohen
,
T.
Navickas
,
B.
Lekitsch
,
A.
Retzker
, and
W. K.
Hensinger
,
Phys. Rev. Lett.
117
,
220501
(
2016
).
33.
S.
Olmschenk
,
K. C.
Younge
,
D. L.
Moehring
,
D. N.
Matsukevich
,
P.
Maunz
, and
C.
Monroe
,
Phys. Rev. A
76
,
052314
(
2007
).
34.
R.
Islam
,
W. C.
Campbell
,
T.
Choi
,
S. M.
Clark
,
C. W. S.
Conover
,
S.
Debnath
,
E. E.
Edwards
,
B.
Fields
,
D.
Hayes
,
D.
Hucul
,
I. V.
Inlek
,
K. G.
Johnson
,
S.
Korenblit
,
A.
Lee
,
K. W.
Lee
,
T. A.
Manning
,
D. N.
Matsukevich
,
J.
Mizrahi
,
Q.
Quraishi
,
C.
Senko
,
J.
Smith
, and
C.
Monroe
,
Opt. Lett.
39
,
3238
(
2014
).
35.
B. C. A.
Morrison
,
A. J.
Landahl
,
D. S.
Lobser
,
K. M.
Rudinger
,
A. E.
Russo
,
J. W.
Van Der Wall
, and
P.
Maunz
, in
2020 IEEE International Conference on Quantum Computing and Engineering (QCE)
(
IEEE
,
2020
), pp.
402
408
.
36.
A.
Sørensen
and
K.
Mølmer
,
Phys. Rev. Lett.
82
,
1971
(
1999
).
37.
P. J.
Lee
,
K. A.
Brickman
,
L.
Deslauriers
,
P. C.
Haljan
,
L. M.
Duan
, and
C.
Monroe
,
J. Opt. B: Quantum Semiclassical Opt.
7
,
S371
(
2005
).
38.
T. R.
Tan
,
J. P.
Gaebler
,
Y.
Lin
,
Y.
Wan
,
R.
Bowler
,
D.
Leibfried
, and
D. J.
Wineland
,
Nature
528
,
380
(
2015
).
39.
C. H.
Baldwin
,
B. J.
Bjork
,
J. P.
Gaebler
,
D.
Hayes
, and
D.
Stack
,
Phys. Rev. Res.
2
,
013317
(
2020
).
40.
C.
Campbell
,
F. T.
Chong
,
D.
Dahl
,
P.
Frederick
,
P.
Goiporia
,
P.
Gokhale
,
B.
Hall
,
S.
Issa
,
E.
Jones
,
S.
Lee
,
A.
Litteken
,
V.
Omole
,
D.
Owusu-Antwi
,
M. A.
Perlin
,
R.
Rines
,
K. N.
Smith
,
N.
Goss
,
A.
Hashim
,
R.
Naik
,
E.
Younis
,
D.
Lobser
,
C. G.
Yale
,
B.
Huang
, and
J.
Liu
, in
2023 IEEE International Conference on Quantum Computing and Engineering (QCE)
(
IEEE
,
2023
), Vol.
01
, pp.
1020
1032
.
41.
D. S.
Lobser
,
J. W.
Van Der Wall
, and
J. D.
Goldberg
, in
2022 IEEE International Conference on Quantum Computing and Engineering (QCE)
(
IEEE
,
2022
), pp.
320
330
.
42.
S.
Debnath
, “
A programmable five qubit quantum computer using trapped atomic ions
,” Ph.D. thesis (
University of Maryland
,
College Park
,
2016
).
43.
44.
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
184
,
1234
(
2013
).
45.
B. P.
Ruzic
,
M. N. H.
Chow
,
A. D.
Burch
,
D.
Lobser
,
M. C.
Revelle
,
J. M.
Wilson
,
C. G.
Yale
, and
S. M.
Clark
, “
Frequency-robust Mølmer-Sørensen gates via balanced contributions of multiple motional modes
,” arXiv:2210.02372 [quant-ph] (
2022
).
You do not currently have access to this content.