Carbon materials exhibit diverse mechanical properties, from hard diamond to soft graphite. However, carbon materials with high ductility are rare, because of strong covalent bonds between carbon atoms. Here, we propose that the structures of triangular lattice have higher ductility than those of hexagonal or quadrangle lattice. A two-dimensional (2D) carbon network, named a carbon Kagome lattice (CKL), is used as an example to verify the point. The carbon structure has a Kagome lattice similar to the triangular lattice. Because empirical potentials cannot well simulate mechanical properties of carbon structures with triangular carbon rings, we work out a neuroevolution potential (NEP) based on a machine learning method. Structural evolution and phase transition under strain have been studied based on the NEP. The results indicate that the ductility of 2D CKL can approach 80%, and even at a high temperature, the ductility can reach 48%. The ductile values are the highest in all 2D crystal materials except the molecular materials. The high ductility is attributed to the phase transition of 2D CKL under tensile strain. It transits to another carbon allotrope, named Carbon Ene-Yne graphyne, which can also sustain a large tensile strain. Our work not only proposes that the materials with triangular lattice have high ductile ability but also finds a 2D carbon material with the highest ductility, extending mechanical applications of materials.

1.
V.
Blank
,
M.
Popov
,
G.
Pivovarov
,
N.
Lvova
, and
S.
Terentev
,
Diamond Relat. Mater.
8
(
8–9
),
1531
(
1999
).
2.
C.
Malmstrom
,
R.
Keen
, and
L.
Green
, Jr.
,
J. Appl. Phys
22
(
5
),
593
(
1951
).
3.
D. G.
Papageorgiou
,
I. A.
Kinloch
, and
R. J.
Young
,
Prog. Mater. Sci.
90
,
75
(
2017
).
4.
J.
Jiang
and
H. S.
Park
,
Nano Lett.
16
(
4
),
2657
(
2016
).
5.
J.
Zhang
and
Q.
Xiong
,
Phys. Chem. Chem. Phys.
20
(
6
),
4597
(
2018
).
6.
H.
Yuan
,
G.
Huang
,
G.
Qin
,
L.
Zhang
,
Y.
Xie
, and
Y.
Chen
,
Crystals
13
(
3
),
442
(
2023
).
7.
J.
Shigley
,
C. R.
Mischke
, and
R. G.
Budynas
, Mechanical Engineering Design (McGraw-Hill,
1972
).
8.
C. C.
Koch
,
D. G.
Morris
,
K.
Lu
, and
A.
Inoue
,
MRS Bull.
24
(
2
),
54
(
1999
).
9.
Y.
Chen
,
Y. Y.
Sun
,
H.
Wang
,
D.
West
,
Y.
Xie
,
J.
Zhong
,
V.
Meunier
,
M. L.
Cohen
, and
S. B.
Zhang
,
Phys. Rev. Lett.
113
(
8
),
85501
(
2014
).
10.
D. W.
Brenner
,
Phys. Rev. B
42
(
15
),
9458
(
1990
).
11.
J.
Tersoff
,
Phys. Rev. B
39
(
8
),
5566
(
1989
).
12.
L.
Lindsay
and
D. A.
Broido
,
Phys. Rev. B
81
(
20
),
205441
(
2010
).
13.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
,
J. Chem. Phys.
112
(
14
),
6472
(
2000
).
14.
J. H.
Los
and
A.
Fasolino
,
Phys. Rev. B
68
(
2
),
024107
(
2003
).
15.
P.
Rowe
,
V. L.
Deringer
,
P.
Gasparotto
,
G.
Csányi
, and
A.
Michaelides
,
J. Chem. Phys.
153
(
3
),
034702
(
2020
).
16.
N.
Orekhov
and
M.
Logunov
,
Carbon
192
,
179
(
2022
).
17.
J. T.
Willman
,
K.
Nguyen-Cong
,
A. S.
Williams
,
A. B.
Belonoshko
,
S. G.
Moore
,
A. P.
Thompson
,
M. A.
Wood
, and
I. I.
Oleynik
,
Phys. Rev. B
106
(
18
),
L180101
(
2022
).
18.
J.
Wu
,
E.
Zhou
,
Z.
Qin
,
X.
Zhang
, and
G.
Qin
,
Nanotechnology
33
(
27
),
275710
(
2022
).
19.
X.
Liu
,
R.
Peng
,
Z.
Sun
, and
J.
Liu
,
Nano Lett.
22
(
19
),
7791
(
2022
).
20.
Z.
Fan
,
Z.
Zeng
,
C.
Zhang
,
Y.
Wang
,
K.
Song
,
H.
Dong
,
Y.
Chen
, and
T.
Ala-Nissila
,
Phys. Rev. B
104
(
10
),
104309
(
2021
).
21.
Z.
Fan
,
J. Phys.: Condens. Matter
34
(
12
),
125902
(
2022
).
22.
B.
Mortazavi
and
X.
Zhuang
,
Flatchem
36
,
100446
(
2022
).
23.
E. C.
Girao
,
L.
Liang
,
E.
Cruz-Silva
,
A. G.
Souza Filho
, and
V.
Meunier
,
Phys. Rev. Lett.
107
(
13
),
135501
(
2011
).
24.
J.
Cai
,
P.
Ruffieux
,
R.
Jaafar
,
M.
Bieri
,
T.
Braun
,
S.
Blankenburg
,
M.
Muoth
,
A. P.
Seitsonen
,
M.
Saleh
, and
X.
Feng
,
Nature
466
(
7305
),
470
(
2010
).
25.
D. Y.
Chen
,
R. H.
Pouwer
, and
J.
Richard
,
Chem. Soc. Rev.
41
(
13
),
4631
(
2012
).
27.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
29.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
(
1994
).
30.
S.
Nosé
,
J. Chem. Phys.
81
(
1
),
511
(
1984
).
31.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
32.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
(
14
),
146401
(
2007
).
33.
J.
Behler
,
J. Chem. Phys.
134
(
7
),
074106
(
2011
).
34.
M. A.
Caro
,
Phys. Rev. B
100
(
2
),
024112
(
2019
).
35.
S.
Wold
,
K.
Esbensen
, and
P.
Geladi
,
Chemom. Intell. Lab.
2
(
1–3
),
37
(
1987
).
36.
Y.
Eldar
,
M.
Lindenbaum
,
M.
Porat
, and
Y. Y.
Zeevi
,
IEEE Trans. Image Process.
6
(
9
),
1305
(
1997
).
37.
Z.
Fan
,
Y.
Wang
,
P.
Ying
,
K.
Song
,
J.
Wang
,
Y.
Wang
,
Z.
Zeng
,
K.
Xu
,
E.
Lindgren
, and
J. M.
Rahm
,
J. Chem. Phys.
157
(
11
),
114801
(
2022
).
38.
S.
Plimpton
,
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
39.
D. J.
Evans
and
G. P.
Morriss
,
Phys. Lett. A
98
(
8–9
),
433
(
1983
).
40.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2009
).
41.
Y. I.
Jhon
,
Y. M.
Jhon
,
G. Y.
Yeom
, and
M. S.
Jhon
,
Carbon
66
,
619
(
2014
).
42.
S. W.
Cranford
and
M. J.
Buehler
,
Carbon
49
(
13
),
4111
(
2011
).
43.
M. Q.
Chen
,
S. S.
Quek
,
Z. D.
Sha
,
C. H.
Chiu
,
Q. X.
Pei
, and
Y. W.
Zhang
,
Carbon
85
,
135
(
2015
).
44.
B.
Mortazavi
,
O.
Rahaman
,
T.
Rabczuk
, and
L. F. C.
Pereira
,
Carbon
106
,
1
8
(
2016
).
45.
R. K.
Zahedi
,
A.
Shirazi
,
P.
Alimouri
,
N.
Alajlan
, and
T.
Rabczuk
,
Comput. Mater. Sci.
168
,
1
10
(
2019
).

Supplementary Material

You do not currently have access to this content.