Frequency-domain probe beam deflection (FD-PBD) is an experimental technique for measuring thermal properties that combines heating by a modulated pump laser and measurement of the temperature field via thermoelastic displacement of the sample surface. In the conventional implementation of FD-PBD, the data are mostly sensitive to the in-plane thermal diffusivity. We describe an extension of FD-PBD that introduces sensitivity to through-plane thermal conductance by immersing the sample in a dielectric liquid and measuring the beam deflection created by the temperature field of the liquid. We demonstrate the accuracy of the method by measuring (1) the thermal conductivity of a 310 nm thick thermally grown oxide on Si, (2) the thermal boundary conductance of bonded interface between a 3C-SiC film and a single crystal diamond substrate, and (3) the thermal conductivities of several bulk materials. We map the thermal boundary conductance of a 3C-SiC/diamond interface with a precision of 1% using a lock-in time constant of 3 ms and dwell time of 15 ms. The spatial resolution and maximum probing depth are proportional to the radius of the focused laser beams and can be varied over the range of 1–20 μm and 4–80 μm, respectively, by varying the 1/e2 intensity radius of the focused laser beams from 2 to 40 μm. FD-PBD with liquid immersion thus enables fast mapping of spatial variations in thermal boundary conductance of deeply buried interfaces.

1.
S.
Huxtable
,
D. G.
Cahill
,
V.
Fauconnier
,
J. O.
White
, and
J.-C.
Zhao
, “
Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials
,”
Nat. Mater.
3
(
5
),
298
301
(
2004
).
2.
E.
López-Honorato
,
C.
Chiritescu
,
P.
Xiao
,
D. G.
Cahill
,
G.
Marsh
, and
T. J.
Abram
, “
Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance
,”
J. Nucl. Mater.
378
(
1
),
35
39
(
2008
).
3.
J.
Yang
,
C.
Maragliano
, and
A. J.
Schmidt
, “
Thermal property microscopy with frequency domain thermoreflectance
,”
Rev. Sci. Instrum.
84
(
10
),
104904
(
2013
).
4.
A.
Sood
,
R.
Cheaito
,
T.
Bai
,
H.
Kwon
,
Y.
Wang
,
C.
Li
,
L.
Yates
,
T.
Bougher
,
S.
Graham
, and
M.
Asheghi
, “
Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries
,”
Nano Lett.
18
(
6
),
3466
3472
(
2018
).
5.
Z.
Cheng
,
R.
Cheaito
,
T.
Bai
,
L.
Yates
,
A.
Sood
,
B. M.
Foley
,
T. L.
Bougher
,
F.
Faili
,
M.
Asheghi
, and
K. E.
Goodson
,
International Heat Transfer Conference Digital Library
(
Begel House Inc
.,
2018
).
6.
D. H.
Olson
,
J. L.
Braun
, and
P. E.
Hopkins
, “
Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale
,”
J. Appl. Phys.
126
(
15
),
150901
(
2019
).
7.
E. K.
Pek
,
J.
Brethauer
, and
D. G.
Cahill
, “
High spatial resolution thermal conductivity mapping of SiC/SiC composites
,”
J. Nucl. Mater.
542
,
152519
(
2020
).
8.
D. B.
Brown
,
W.
Shen
,
X.
Li
,
K.
Xiao
,
D. B.
Geohegan
, and
S.
Kumar
, “
Spatial mapping of thermal boundary conductance at metal–molybdenum diselenide interfaces
,”
ACS Appl. Mater. Interfaces
11
(
15
),
14418
14426
(
2019
).
9.
Z.
Cheng
,
F.
Mu
,
X.
Ji
,
T.
You
,
W.
Xu
,
T.
Suga
,
X.
Ou
,
D. G.
Cahill
, and
S.
Graham
, “
Thermal visualization of buried interfaces enabled by ratio signal and steady-state heating of time-domain thermoreflectance
,”
ACS Appl. Mater. Interfaces
13
(
27
),
31843
31851
(
2021
).
10.
J.
Yang
,
E.
Ziade
,
C.
Maragliano
,
R.
Crowder
,
X.
Wang
,
M.
Stefancich
,
M.
Chiesa
,
A. K.
Swan
, and
A. J.
Schmidt
, “
Thermal conductance imaging of graphene contacts
,”
J. Appl. Phys.
116
(
2
),
023515
(
2014
).
11.
X.
Ji
,
Z.
Cheng
,
E. K.
Pek
, and
D. G.
Cahill
, “
Thermal conductivity mapping of oxidized SiC/SiC composites by time‐domain thermoreflectance with heterodyne detection
,”
J. Am. Ceram. Soc.
104
(
9
),
4773
4781
(
2021
).
12.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
,”
J. Appl. Phys.
124
(
16
),
161103
(
2018
).
13.
M.
Bertolotti
and
R. L.
Voti
, “
A note on the history of photoacoustic, thermal lensing, and photothermal deflection techniques
,”
J. Appl. Phys.
128
(
23
),
230901
(
2020
).
14.
G.
Lv
,
E.
Jensen
,
C.
Shen
,
K.
Yang
,
C. M.
Evans
, and
D. G.
Cahill
, “
Effect of amine hardener molecular structure on the thermal conductivity of epoxy resins
,”
ACS Appl. Polym. Mater.
3
(
1
),
259
267
(
2020
).
15.
J.
Sun
,
G.
Lv
, and
D. G.
Cahill
, “
Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale
,”
Rev. Sci. Instrum.
94
(
1
),
014903
(
2023
).
16.
J.
Shin
,
J.
Sung
,
M.
Kang
,
X.
Xie
,
B.
Lee
,
K. M.
Lee
,
T. J.
White
,
C.
Leal
,
N. R.
Sottos
, and
P. V.
Braun
, “
Light-triggered thermal conductivity switching in azobenzene polymers
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
13
),
5973
5978
(
2019
).
17.
S. K. Y.
Tang
,
Z.
Li
,
A. R.
Abate
,
J. J.
Agresti
,
D. A.
Weitz
,
D.
Psaltis
, and
G. M.
Whitesides
, “
A multi-color fast-switching microfluidic droplet dye laser
,”
Lab Chip
9
(
19
),
2767
2771
(
2009
).
18.
X.
Zheng
,
D. G.
Cahill
,
R.
Weaver
, and
J.-C.
Zhao
, “
Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection
,”
J. Appl. Phys.
104
(
7
),
073509
(
2008
).
19.
X.
Xie
,
X.
Zheng
,
R.
Weaver
,
J.-C.
Zhao
, and
D. G.
Cahill
, “
Erratum: ‘Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection’ [J. Appl. Phys. 104, 073509 (2008)]
,”
J. Appl. Phys.
122
(
21
),
219901
(
2017
).
20.
X.
Xie
,
J. M.
Dennison
,
J.
Shin
,
Z.
Diao
, and
D. G.
Cahill
, “
Measurement of water vapor diffusion in nanoscale polymer films by frequency-domain probe beam deflection
,”
Rev. Sci. Instrum.
89
(
10
),
104904
(
2018
).
21.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
, “
A frequency-domain thermoreflectance method for the characterization of thermal properties
,”
Rev. Sci. Instrum.
80
(
9
),
094901
(
2009
).
22.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
23.
K.
Kang
,
Y. K.
Koh
,
C.
Chiritescu
,
X.
Zheng
, and
D. G.
Cahill
, “
Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters
,”
Rev. Sci. Instrum.
79
(
11
),
114901
(
2008
).
24.
G. T.
Hohensee
,
W.-P.
Hsieh
,
M. D.
Losego
, and
D. G.
Cahill
, “
Interpreting picosecond acoustics in the case of low interface stiffness
,”
Rev. Sci. Instrum.
83
(
11
),
114902
(
2012
).
25.
M. S.
Bin Hoque
,
Y. R.
Koh
,
K.
Aryana
,
E. R.
Hoglund
,
J. L.
Braun
,
D. H.
Olson
,
J. T.
Gaskins
,
H.
Ahmad
,
M. M. M.
Elahi
, and
J. K.
Hite
, “
Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance
,”
Rev. Sci. Instrum.
92
(
6
),
064906
(
2021
).

Supplementary Material

You do not currently have access to this content.