One of the most interesting wide-bandgap semiconductor is 4H-SiC that has an indirect wide-bandgap of 3.3 eV. This material holds great potential to develop power devices that find applications in the field of high-voltage and high-temperature electronics and harsh environments. In this study, we employed complementary noninvasive characterization techniques, including micro-Raman, optical absorption, steady-state, and time-resolved photoluminescence spectroscopy, to investigate the characteristics of a 12 μm thick epitaxial layer of 4H-SiC grown on 4H-SiC. Furthermore, we explored the impact of ionizing radiation on this material, utilizing β-rays and two x-ray sources. The doses are in the range of 1–100 kGy for electrons with energy of 2.5 MeV, 16 kGy for the first x-ray source (an x-ray tube with a W target operating at an anode bias voltage of 28 kV), and 100 kGy for the second x-ray source (an x-ray tube with a W target operating at an anode bias voltage of 100 kV). When exposed to the electron beam, the excitonic band at 3.2 eV exhibits a reduction in its lifetime as the deposited dose increases. In particular, in samples characterized by a greater amount of native defects, both extended and point defects, this effect becomes evident at lower deposited doses. Conversely, in the samples subjected to x-ray irradiation, these effects are not observed. These findings indicate that electron beam irradiation triggers the formation of defects associated with atomic displacement. Ultimately, we have examined the impact of thermal treatments in air, ranging from 100 to 900 °C, to investigate the recovery characteristics of 4H-SiC.

1.
T.
Kimoto
, “
Physical properties of silicon carbide
,” in
Fundamentals of Silicon Carbide Technology
(
John Wiley & Sons, Ltd
,
2014
), Chap. 2, pp.
11
38
.
2.
J. A.
Cooper
, “
Bulk growth of silicon carbide
,” in
Fundamentals of Silicon Carbide Technology
(
John Wiley & Sons, Ltd
,
2014
), Chap. 3, pp.
39
74
.
3.
S.
Tudisco
,
F.
La Via
,
C.
Agodi
et al, “
Sicilia–silicon carbide detectors for intense luminosity investigations and applications
,”
Sensors
18
,
2289
(
2018
).
4.
A.
Lebedev
,
E.
Kalinina
, and
V.
Kozlovski
, “
Radiation resistance of devices based on SiC
,”
J. Surf. Investig.
12
,
364
369
(
2018
).
5.
E.
Kalinina
, “
The effect of irradiation on the properties of SiC and devices based on this compound
,”
Semiconductors
41
,
745
783
(
2007
).
6.
A.
Le Donne
,
S.
Binetti
,
M.
Acciarri
, and
S.
Pizzini
, “
Electrical characterization of electron irradiated x-rays detectors based on 4H-SiC epitaxial layers
,”
Diamond Related Mater.
13
,
414
418
(
2004
).
7.
S. K.
Chaudhuri
,
K. J.
Zavalla
, and
K. C.
Mandal
, “
High resolution alpha particle detection using 4H–SiC epitaxial layers: Fabrication, characterization, and noise analysis
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
728
,
97
101
(
2013
).
8.
K. C.
Mandal
,
P. G.
Muzykov
, and
J.
Russell Terry
, “
Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers
,”
Appl. Phys. Lett.
101
,
051111
(
2012
).
9.
E. V.
Kalinina
,
A.
Lebedev
,
V. V.
Kozlovski
,
V.
Zabrodski
,
A. M.
Strel'chuk
, and
I. P.
Nikitina
, “
Electrophysical and optical properties of 4H-SiC UV detectors irradiated with electrons
,” in
Silicon Carbide and Related Materials 2018
, Materials Science Forum, Vol.
963
(
Trans Tech Publications Ltd
,
2019
), pp.
722
725
.
10.
F.
Nava
,
G.
Bertuccio
,
A.
Cavallini
, and
E.
Vittone
, “
Silicon carbide and its use as a radiation detector material
,”
Meas. Sci. Technol.
19
,
102001
(
2008
).
11.
F.
Moscatelli
, “
Silicon carbide for UV, alpha, beta and X-ray detectors: Results and perspectives
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
583
,
157
161
(
2007
). proceedings of the 6th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices.
12.
A.
Lebedev
,
V. V.
Kozlovski
,
N. B.
Strokan
,
D.
Davydov
,
A. M.
Ivanov
,
A. M.
Strel'chuk
, and
R.
Yakimova
, “
Radiation hardness of silicon carbide
,” in
Silicon Carbide and Related Materials—2002
, Materials Science Forum, Vol.
433
(
Trans Tech Publications Ltd
,
2003
), pp.
957
960
.
13.
A.
Le Donne
,
S.
Binetti
, and
S.
Pizzini
, “
Electrical and optical characterization of electron-irradiated 4H-SiC epitaxial layers annealed at low temperature
,”
Diamond Related Mater.
14
,
1150
1153
(
2005
). proceedings of Diamond 2004, the 15th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide.
14.
I. P.
Vali
,
P. K.
Shetty
,
M.
Mahesha
,
V.
Sathe
,
D.
Phase
, and
R.
Choudhary
, “
Structural and optical studies of gamma irradiated n-doped 4H-SiC
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
440
,
101
106
(
2019
).
15.
P.
Hazdra
,
V.
Záhlava
,
J.
Vobecký
,
M.
Berthou
, and
A.
Mihaila
, “
Radiation defects produced in 4H-SiC epilayers by proton and alpha-particle irradiation
,” in
Silicon Carbide and Related Materials 2012
, Materials Science Forum, Vol.
740
(
Trans Tech Publications Ltd
,
2013
), pp.
661
664
.
16.
A.
Castaldini
,
A.
Cavallini
,
L.
Rigutti
,
F.
Nava
,
S.
Ferrero
, and
F.
Giorgis
, “
Deep levels by proton and electron irradiation in 4H–SiC
,”
J. Appl. Phys.
98
,
053706
(
2005
).
17.
P.
Hazdra
and
S.
Popelka
, “
Displacement damage and total ionisation dose effects on 4H-SiC power devices
,”
IET Power Electron.
12
,
3910
3918
(
2019
).
18.
P.
Hazdra
and
J.
Vobecký
, “
Radiation defects created in n-type 4H-SiC by electron irradiation in the energy range of 1–10 MeV
,”
Phys. Status Solidi A
216
,
1900312
(
2019
).
19.
J. M.
Rafí
,
G.
Pellegrini
,
P.
Godignon
,
S. O.
Ugobono
,
G.
Rius
,
I.
Tsunoda
,
M.
Yoneoka
,
K.
Takakura
,
G.
Kramberger
, and
M.
Moll
, “
Electron, neutron, and proton irradiation effects on SiC radiation detectors
,”
IEEE Trans. Nucl. Sci.
67
,
2481
2489
(
2020
).
20.
S.
Popelka
and
P.
Hazdra
, “
Effect of electron irradiation on 1700V 4H-SiC MOSFET characteristics
,” in
Silicon Carbide and Related Materials 2015
, Materials Science Forum, Vol.
858
(
Trans Tech Publications Ltd
,
2016
), pp.
856
859
.
21.
Z.
Luo
,
T.
Chen
,
D. C.
Sheridan
, and
J. D.
Cressler
, “
4H-SiC
power-switching devices for extreme-environment applications
,” in
SiC Power Materials: Devices and Applications
, edited by
Z. C.
Feng
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2004
), pp.
375
409
.
22.
J.
Vobecký
,
P.
Hazdra
,
S.
Popelka
, and
R. K.
Sharma
, “
Impact of electron irradiation on the on-state characteristics of a 4H–SiC JBS diode
,”
IEEE Trans. Electron Devices
62
,
1964
1969
(
2015
).
23.
A.
Lebedev
,
V.
Kozlovski
,
M.
Levinshtein
,
A.
Ivanov
,
A.
Strel'chuk
,
A.
Zubov
, and
L.
Fursin
, “
Impact of 0.9 MeV electron irradiation on main properties of high voltage vertical power 4H-SiC MOSFETs
,”
Radiat. Phys. Chem.
177
,
109200
(
2020
).
24.
S.
Nakashima
,
T.
Kitamura
,
T.
Mitani
,
H.
Okumura
,
M.
Katsuno
, and
N.
Ohtani
, “
Raman scattering study of carrier-transport and phonon properties of 4 H-SiC crystals with graded doping
,”
Phys. Rev. B
76
,
245208
(
2007
).
25.
T.
Yamashita
,
S.
Hayashi
,
T.
Naijo
,
K.
Momose
,
H.
Osawa
,
J.
Senzaki
,
K.
Kojima
,
T.
Kato
, and
H.
Okumura
, “
Characterization of stacking faults with emission wavelengths of over 500 nm formed in 4H-SiC epitaxial films
,”
J. Cryst. Growth
476
,
99
106
(
2017
).
26.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer
,
New York
,
2007
).
27.
S.
Agnello
,
Spectroscopy for Materials Characterization
(
John Wiley & Sons Inc
,
2021
).
28.
S.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons Inc
,
2006
).
29.
J.
Beyer
,
N.
Schüler
,
J.
Erlekampf
,
B.
Kallinger
,
P.
Berwian
,
K.
Dornich
, and
J.
Heitmann
, “
Minority carrier lifetime measurements on 4H-SiC epiwafers by time-resolved photoluminescence and microwave detected photoconductivity
,” in
Silicon Carbide and Related Materials 2018
, Materials Science Forum, Vol.
963
(
Trans Tech Publications Ltd
,
2019
), pp.
313
317
.
30.
L.
Storasta
,
J. P.
Bergman
,
E.
Janzèn
,
A.
Henry
, and
J.
Lu
, “
Deep levels created by low energy electron irradiation in 4H-SiC
,”
J. Appl. Phys.
96
,
4909
4915
(
2004
).
31.
J.
Srour
,
C.
Marshall
, and
P.
Marshall
, “
Review of displacement damage effects in silicon devices
,”
IEEE Trans. Nucl. Sci.
50
,
653
670
(
2003
).
32.
J. R.
Srour
and
J. W.
Palko
, “
Displacement damage effects in irradiated semiconductor devices
,”
IEEE Trans. Nucl. Sci.
60
,
1740
1766
(
2013
).
33.
J.
Steeds
,
G.
Evans
,
L.
Danks
,
S.
Furkert
,
W.
Voegeli
,
M.
Ismail
, and
F.
Carosella
, “
Transmission electron microscope radiation damage of 4H and 6H SiC studied by photoluminescence spectroscopy
,”
Diamond Related Mater.
11
,
1923
1945
(
2002
).
34.
S. A.
Reshanov
,
S.
Beljakowa
,
B.
Zippelius
,
G.
Pensl
,
K.
Danno
,
G.
Alfieri
,
T.
Kimoto
,
S.
Onoda
,
T.
Ohshima
,
F.
Yan
,
R. P.
Devaty
, and
W. J.
Choyke
, “
Thermal stability of defect centers in n- and p-type 4H-SiC epilayers generated by irradiation with high-energy electrons
,” in
Silicon Carbide and Related Materials 2009
, Materials Science Forum, Vol.
645
(
Trans Tech Publications Ltd
,
2010
), pp.
423
426
.
35.
K.
Danno
and
T.
Kimoto
, “
Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons
,”
J. Appl. Phys.
100
,
113728
(
2006
).
36.
G.
Alfieri
,
E. V.
Monakhov
,
B. G.
Svensson
, and
M. K.
Linnarsson
, “
Annealing behavior between room temperature and 2000C of deep level defects in electron-irradiated n-type 4H silicon carbide
,”
J. Appl. Phys.
98
,
043518
(
2005
).
You do not currently have access to this content.