The basic requirements for lithium-ion batteries in the field of electric vehicles are fast charging and high energy density. This will enhance the competitiveness of electric vehicles in the market while reducing greenhouse gas emissions and effectively preventing environmental pollution. However, the current lithium-ion batteries using graphite anodes cannot achieve the goal of fast charging without compromising electrochemical performance and safety issue. This article analyzes the mechanism of graphite materials for fast-charging lithium-ion batteries from the aspects of battery structure, charge transfer, and mass transport, aiming to fundamentally understand the failure mechanisms of batteries during fast charging. In addition, we review and discuss recent advances in strategies for optimizing fast-charging performance and summarize current improvement methods in graphite electrodes, electrolytes, battery structures, and charging algorithms. Moreover, the challenges and promising concepts for developing future fast-charging graphite anode are emphasized. This review is of great significance for better designing and optimizing graphite materials for high-safety and fast-charging lithium-ion batteries.

1.
R.
Schmuch
,
R.
Wagner
,
G.
Hörpel
,
T.
Placke
, and
M.
Winter
,
Nat. Energy
3
(
4
),
267
(
2018
).
2.
J.
Tian
,
X.
Liu
,
S.
Li
,
Z.
Wei
,
X.
Zhang
,
G.
Xiao
, and
P.
Wang
,
Energy
270
,
126855
(
2023
).
3.
A.
Burnham
,
E. J.
Dufek
,
T.
Stephens
,
J.
Francfort
,
C.
Michelbacher
,
R. B.
Carlson
,
J.
Zhang
,
R.
Vijayagopal
,
F.
Dias
, and
M.
Mohanpurkar
,
J. Power Sources
367
,
237
(
2017
).
4.
A. R.
Meddour
,
N.
Rizoug
,
P.
Leserf
,
C.
Vagg
,
R.
Burke
, and
C.
Larouci
,
Energies
16
(
18
),
6535
(
2023
).
5.
K.-H.
Chen
,
M. J.
Namkoong
,
V.
Goel
,
C.
Yang
,
S.
Kazemiabnavi
,
S.
Mortuza
,
E.
Kazyak
,
J.
Mazumder
,
K.
Thornton
, and
J.
Sakamoto
,
J. Power Sources
471
,
228475
(
2020
).
6.
Y.
Liu
,
Y.
Zhu
, and
Y.
Cui
,
Nat. Energy
4
(
7
),
540
(
2019
).
7.
Y.-P.
Wu
,
E.
Rahm
, and
R.
Holze
,
J. Power Sources
114
(
2
),
228
(
2003
).
8.
C. D. L.
Casas
and
W.
Li
,
J. Power Sources
208
(
15
),
74
(
2012
).
9.
Z.
Li
,
X.
Wu
,
W.
Luo
,
C.
Wang
,
W.
Feng
,
X.
Hong
, and
L.
Mai
,
Chem. Eng. J.
431
,
134207
(
2022
).
10.
D. S.
Kim
,
J. U.
Lee
,
S. H.
Kim
, and
J. Y.
Hong
,
Battery Energy
2
(
5
),
20230012
(
2023
).
11.
Y.
Wu
,
C.
Jiang
,
C.
Wan
, and
E.
Tsuchida
,
Electrochem. Commun.
2
(
4
),
272
(
2000
).
12.
A.
Mukhopadhyay
,
A.
Tokranov
,
K.
Sena
,
X.
Xiao
, and
B. W.
Sheldon
,
Carbon
49
(
8
),
2742
(
2011
).
13.
Q.
Liu
,
C.
Du
,
B.
Shen
,
P.
Zuo
,
X.
Cheng
,
Y.
Ma
,
G.
Yin
, and
Y.
Gao
,
RSC Adv.
6
(
91
),
88683
(
2016
).
14.
T.
Waldmann
,
B.-I.
Hogg
, and
M.
Wohlfahrt-Mehrens
,
J. Power Sources
384
,
107
(
2018
).
15.
T.
Placke
,
V.
Siozios
,
R.
Schmitz
,
S.
Lux
,
P.
Bieker
,
C.
Colle
,
H.-W.
Meyer
,
S.
Passerini
, and
M.
Winter
,
J. Power Sources
200
,
83
(
2012
).
16.
T.
Tanabe
,
S.
Muto
, and
K.
Niwase
,
Appl. Phys. Lett.
61
(
14
),
1638
(
1992
).
17.
D. A.
Santos
,
S.
Rezaei
,
D.
Zhang
,
Y.
Luo
,
B.
Lin
,
A. R.
Balakrishna
,
B.-X.
Xu
, and
S.
Banerjee
,
Chem. Sci.
14
(
3
),
458
(
2023
).
18.
A.
Yamada
,
S.-C.
Chung
, and
K.
Hinokuma
,
J. Electrochem. Soc.
148
(
3
),
A224
(
2001
).
19.
Y.
Lyu
,
X.
Wu
,
K.
Wang
,
Z.
Feng
,
T.
Cheng
,
Y.
Liu
,
M.
Wang
,
R.
Chen
,
L.
Xu
, and
J.
Zhou
,
Adv. Energy Mater.
11
(
2
),
2000982
(
2021
).
20.
A.
Hammou
,
R.
Petrone
,
D.
Diallo
, and
H.
Gualous
,
IEEE Trans. Energy Convers.
38
(
3
),
2160
(
2023
).
21.
L.
Xie
,
C.
Tang
,
Z.
Bi
,
M.
Song
,
Y.
Fan
,
C.
Yan
,
X.
Li
,
F.
Su
,
Q.
Zhang
, and
C.
Chen
,
Adv. Energy Mater.
11
(
38
),
2101650
(
2021
).
22.
J.
Xu
,
S.
An
,
X.
Song
,
Y.
Cao
,
N.
Wang
,
X.
Qiu
,
Y.
Zhang
,
J.
Chen
,
X.
Duan
, and
J.
Huang
,
Adv. Mater.
33
(
49
),
2105178
(
2021
).
23.
J.
Li
,
J.
Yang
,
Z.
Ji
,
M.
Su
,
H.
Li
,
Y.
Wu
,
X.
Su
, and
Z.
Zhang
,
Adv. Energy Mater.
13
(
35
),
2301422
(
2023
).
24.
M.
Zhao
,
B. Q.
Li
,
H. J.
Peng
,
H.
Yuan
,
J. Y.
Wei
, and
J. Q.
Huang
,
Angew. Chem., Int. Ed.
59
(
31
),
12636
(
2020
).
25.
Y.
Li
,
W.
Wang
,
X.
Liu
,
E.
Mao
,
M.
Wang
,
G.
Li
,
L.
Fu
,
Z.
Li
,
A. Y. S.
Eng
, and
Z. W.
Seh
,
Energy Storage Mater.
23
,
261
(
2019
).
26.
H. V.
Helmholtz
,
Ann. Phys.
165
(
7
),
353
(
1853
).
27.
28.
F.
Deng
,
H.
Olvera-Vargas
,
M.
Zhou
,
S.
Qiu
,
I.
Sirés
, and
E.
Brillas
,
Chem. Rev.
123
(
8
),
4635
(
2023
).
29.
B.
Huang
,
K. H.
Myint
,
Y.
Wang
,
Y.
Zhang
,
R. R.
Rao
,
J.
Sun
,
S.
Muy
,
Y.
Katayama
,
J.
Corchado Garcia
, and
D.
Fraggedakis
,
J. Phys. Chem. C
125
(
8
),
4397
(
2021
).
30.
Y.
Wang
,
X.
Zhang
,
N.
Ju
,
H.
Jia
,
Z.
Sun
,
J.
Liang
,
R.
Guo
,
D.
Niu
, and
H.-B.
Sun
,
J. Environ. Sci.
126
,
211
(
2023
).
31.
L.
Xu
,
Y.
Xiao
,
Y.
Yang
,
S. J.
Yang
,
X. R.
Chen
,
R.
Xu
,
Y. X.
Yao
,
W. L.
Cai
,
C.
Yan
, and
J. Q.
Huang
,
Angew. Chem., Int. Ed.
61
(
39
),
e202210365
(
2022
).
32.
W.
Zhang
,
Y.
Lu
,
L.
Wan
,
P.
Zhou
,
Y.
Xia
,
S.
Yan
,
X.
Chen
,
H.
Zhou
,
H.
Dong
, and
K.
Liu
,
Nat. Commun.
13
(
1
),
2029
(
2022
).
33.
F.
Chu
,
G.
Xiao
,
L.
Xia
,
Y.
Yang
,
G.
Yang
, and
Z. A.
Tan
,
J. Electrochem. Soc.
169
(
7
),
070529
(
2022
).
34.
F.
Wang
,
G.
Xiao
, and
F.
Chu
,
Chem. Eng. J.
451
,
138619
(
2023
).
35.
E. R.
Eckert
and
R. M.
Drake
, Jr.
, Analysis of Heat and Mass Transfer (Hemisphere Publishing,
1987
).
36.
W. M.
Kays
,
M. E.
Crawford
, and
B.
Weigand
,
Convective Heat and Mass Transfer
(
McGraw-Hill
,
New York
,
1980
).
37.
Y.
Jaluria
, Natural Convection: Heat and Mass Transfer (
Pergamon Press
,
1980
).
38.
A. J.
Bard
,
L. R.
Faulkner
, and
H. S.
White
,
Electrochemical Methods: Fundamentals and Applications.
(
John Wiley & Sons
,
2022
).
39.
K.
Krabbenhøft
and
J.
Krabbenhøft
,
Cem. Concr. Res.
38
(
1
),
77
(
2008
).
40.
S.
Thomas
,
C. H.
Lee
,
S.
Jana
,
B.
Jun
, and
S. U.
Lee
,
J. Phys. Chem. C
123
(
35
),
21345
(
2019
).
41.
M.
Doyle
,
T. F.
Fuller
, and
J.
Newman
,
J. Electrochem. Soc.
140
(
6
),
1526
(
1993
).
42.
T. F.
Fuller
,
M.
Doyle
, and
J.
Newman
,
J. Electrochem. Soc.
141
(
1
),
1
(
1994
).
43.
H.
Gao
,
Q.
Wu
,
Y.
Hu
,
J. P.
Zheng
,
K.
Amine
, and
Z.
Chen
,
J. Phys. Chem. Lett.
9
(
17
),
5100
(
2018
).
44.
K. K.
Patel
,
J. M.
Paulsen
, and
J.
Desilvestro
,
J. Power Sources
122
(
2
),
144
(
2003
).
45.
I. V.
Thorat
,
D. E.
Stephenson
,
N. A.
Zacharias
,
K.
Zaghib
,
J. N.
Harb
, and
D. R.
Wheeler
,
J. Power Sources
188
(
2
),
592
(
2009
).
46.
M.
Doyle
,
J.
Newman
,
A. S.
Gozdz
,
C. N.
Schmutz
, and
J. M.
Tarascon
,
J. Electrochem. Soc.
143
(
6
),
1890
(
1996
).
47.
K.
Abraham
,
Electrochim. Acta
38
(
9
),
1233
(
1993
).
48.
M.
Drzal
,
D.
Keith Cassel
, and
W.
Fonteno
, paper presented at the
International Symposium on Growing Media and Hydroponics
,
1997
.
49.
G.
Inoue
and
M.
Kawase
,
J. Power Sources
342
,
476
(
2017
).
50.
N.
Ogihara
,
Y.
Itou
,
T.
Sasaki
, and
Y.
Takeuchi
,
J. Phys. Chem. C
119
(
9
),
4612
(
2015
).
51.
B.
Vijayaraghavan
,
D. R.
Ely
,
Y.-M.
Chiang
,
R.
García-García
, and
R. E.
García
,
J. Electrochem. Soc.
159
(
5
),
A548
(
2012
).
52.
C. J.
Bae
,
C. K.
Erdonmez
,
J. W.
Halloran
, and
Y. M.
Chiang
,
Adv. Mater.
25
(
9
),
1254
(
2013
).
53.
T.-T.
Nguyen
,
A.
Demortière
,
B.
Fleutot
,
B.
Delobel
,
C.
Delacourt
, and
S. J.
Cooper
,
npj Comput. Mater.
6
(
1
),
123
(
2020
).
54.
F.
Shen
,
W.
Luo
,
J.
Dai
,
Y.
Yao
,
M.
Zhu
,
E.
Hitz
,
Y.
Tang
,
Y.
Chen
,
V. L.
Sprenkle
, and
X.
Li
,
Adv. Energy Mater.
6
(
14
),
1600377
(
2016
).
55.
Z.
Han
,
S.
Li
,
R.
Xiong
,
Z.
Jiang
,
M.
Sun
,
W.
Hu
,
L.
Peng
,
R.
He
,
H.
Zhou
, and
C.
Yu
,
Adv. Funct. Mater.
32
(
12
),
2108669
(
2022
).
56.
C.
Zhan
,
T.
Wu
,
J.
Lu
, and
K.
Amine
,
Energy Environ. Sci.
11
(
2
),
243
(
2018
).
57.
X.
Cao
,
Y.
Qiao
,
M.
Jia
,
P.
He
, and
H.
Zhou
,
Adv. Energy Mater.
12
(
4
),
2003972
(
2022
).
58.
M.
Doyle
and
J.
Newman
,
J. Electrochem. Soc.
142
(
10
),
3465
(
1995
).
59.
K. D.
Fong
,
J.
Self
,
K. M.
Diederichsen
,
B. M.
Wood
,
B. D.
McCloskey
, and
K. A.
Persson
,
ACS Cent. Sci.
5
(
7
),
1250
(
2019
).
60.
R.
Usiskin
and
J.
Maier
,
Adv. Energy Mater.
11
(
2
),
2001455
(
2021
).
61.
Y.
Zhao
,
L.
Wang
,
Y.
Zhou
,
Z.
Liang
,
N.
Tavajohi
,
B.
Li
, and
T.
Li
,
Adv. Sci.
8
(
7
),
2003675
(
2021
).
62.
R.
Zahn
,
M. F.
Lagadec
,
M.
Hess
, and
V.
Wood
,
ACS Appl. Mater. Interfaces
8
(
48
),
32637
(
2016
).
63.
E.
Pitts
,
Proc. R. Soc. London, Ser. A
217
(
1128
),
43
(
1953
).
64.
K. L.
Gering
,
Electrochim. Acta
225
,
175
(
2017
).
65.
E.
Peled
,
J. Electrochem. Soc.
126
(
12
),
2047
(
1979
).
66.
A.
Sarkar
,
I. C.
Nlebedim
, and
P.
Shrotriya
,
J. Power Sources
502
,
229145
(
2021
).
67.
W.-W.
Han
,
R. E. A.
Ardhi
, and
G.-C.
Liu
,
Rare Met.
41
(
2
),
353
(
2022
).
68.
Y.-X.
Lin
,
Z.
Liu
,
K.
Leung
,
L.-Q.
Chen
,
P.
Lu
, and
Y.
Qi
,
J. Power Sources
309
,
221
(
2016
).
69.
T.
Placke
,
V.
Siozios
,
S.
Rothermel
,
P.
Meister
,
C.
Colle
, and
M.
Winter
,
Z. Phys. Chem.
229
(
9
),
1451
(
2015
).
70.
S.
Zhang
,
N. S.
Andreas
,
R.
Li
,
N.
Zhang
,
C.
Sun
,
D.
Lu
,
T.
Gao
,
L.
Chen
, and
X.
Fan
,
Energy Storage Mater.
48
,
44
(
2022
).
71.
Y.
Liu
,
C.
Liao
,
W.
Zhang
,
G.
Hu
,
C.
Zhang
, and
L.
Wang
,
J. Electrochem. Soc.
169
(
10
),
100514
(
2022
).
72.
X.
Lai
,
C.
Jin
,
W.
Yi
,
X.
Han
,
X.
Feng
,
Y.
Zheng
, and
M.
Ouyang
,
Energy Storage Mater.
35
,
470
(
2021
).
73.
X.-L.
Gao
,
X.-H.
Liu
,
W.-L.
Xie
,
L.-S.
Zhang
, and
S.-C.
Yang
,
Rare Met.
40
(
11
),
3038
(
2021
).
74.
Q.
Li
,
D.
Lu
,
J.
Zheng
,
S.
Jiao
,
L.
Luo
,
C.-M.
Wang
,
K.
Xu
,
J.-G.
Zhang
, and
W.
Xu
,
ACS Appl. Mater. Interfaces
9
(
49
),
42761
(
2017
).
75.
Z.
Wang
,
H.
Wang
,
S.
Qi
,
D.
Wu
,
J.
Huang
,
X.
Li
,
C.
Wang
, and
J.
Ma
,
EcoMat
4
(
4
),
e12200
(
2022
).
76.
T.
Abe
,
H.
Fukuda
,
Y.
Iriyama
, and
Z.
Ogumi
,
J. Electrochem. Soc.
151
(
8
),
A1120
(
2004
).
77.
J.
Wandt
,
P.
Jakes
,
J.
Granwehr
,
R.-A.
Eichel
, and
H. A.
Gasteiger
,
Mater. Today
21
(
3
),
231
(
2018
).
78.
E.
Peled
,
C.
Menachem
,
D.
Bar‐Tow
, and
A.
Melman
,
J. Electrochem. Soc.
143
(
1
),
L4
(
1996
).
79.
S.
Thinius
,
M. M.
Islam
,
P.
Heitjans
, and
T.
Bredow
,
J. Phys. Chem. C
118
(
5
),
2273
(
2014
).
80.
Y.
Zhao
,
L.
Jin
,
B.
Zou
,
G.
Qiao
,
T.
Zhang
,
L.
Cong
,
F.
Jiang
,
C.
Li
,
Y.
Huang
, and
Y.
Ding
,
Appl. Therm. Eng.
171
,
115015
(
2020
).
81.
C.
Nowak
,
L.
Froboese
,
M.
Winter
,
T.
Placke
,
W.
Haselrieder
, and
A.
Kwade
,
Energy Technol.
7
(
10
),
1900528
(
2019
).
82.
M.
Doyle
and
J.
Newman
,
J. Appl. Electrochem.
27
,
846
(
1997
).
83.
B.
Lin
,
K.
Wang
,
F.
Liu
, and
Y.
Zhou
,
J. Mater. Sci. Technol.
34
(
8
),
1359
(
2018
).
84.
J.
Zheng
,
Z.
Ju
,
B.
Zhang
,
J.
Nai
,
T.
Liu
,
Y.
Liu
,
Q.
Xie
,
W.
Zhang
,
Y.
Wang
, and
X.
Tao
,
J. Mater. Chem. A
9
(
16
),
10251
(
2021
).
85.
S.
Lei
,
Z.
Zeng
,
M.
Liu
,
H.
Zhang
,
S.
Cheng
, and
J.
Xie
,
Nano Energy
98
,
107265
(
2022
).
86.
K.
Xu
,
A.
von Cresce
, and
U.
Lee
,
Langmuir
26
(
13
),
11538
(
2010
).
87.
L.
Zhao
,
B.
Ding
,
X. Y.
Qin
,
Z.
Wang
,
W.
Lv
,
Y. B.
He
,
Q. H.
Yang
, and
F.
Kang
,
Adv. Mater.
34
(
18
),
2106704
(
2022
).
88.
J.
Billaud
,
F.
Bouville
,
T.
Magrini
,
C.
Villevieille
, and
A. R.
Studart
,
Nat. Energy
1
(
8
),
16097
(
2016
).
89.
L.
Li
,
D.
Zhang
,
J.
Deng
,
Y.
Gou
,
J.
Fang
,
H.
Cui
,
Y.
Zhao
, and
M.
Cao
,
Carbon
183
,
721
(
2021
).
90.
J.
Xu
,
X.
Wang
,
B.
Hu
,
J.
Ding
,
Z.
Zhang
, and
S.
Ge
,
Batteries Supercaps
6
(
4
),
e202200499
(
2023
).
91.
H.
Zhang
,
Y.
Yang
,
D.
Ren
,
L.
Wang
, and
X.
He
,
Energy Storage Mater.
36
,
147
(
2021
).
92.
P.
Luo
,
C.
Zheng
,
J.
He
,
X.
Tu
,
W.
Sun
,
H.
Pan
,
Y.
Zhou
,
X.
Rui
,
B.
Zhang
, and
K.
Huang
,
Adv. Funct. Mater.
32
(
9
),
2107277
(
2022
).
93.
T.-H.
Kim
,
E. K.
Jeon
,
Y.
Ko
,
B. Y.
Jang
,
B.-S.
Kim
, and
H.-K.
Song
,
J. Mater. Chem. A
2
(
20
),
7600
(
2014
).
94.
D.-K.
Son
,
J.
Kim
,
M. R.
Raj
, and
G.
Lee
,
Carbon
175
,
187
(
2021
).
95.
J.
Lee
,
C.
Kim
,
J. Y.
Cheong
, and
I.-D.
Kim
,
Chem
8
(
9
),
2393
(
2022
).
96.
W.
Xu
,
C.
Welty
,
M. R.
Peterson
,
J. A.
Read
, and
N. P.
Stadie
,
J. Electrochem. Soc.
169
(
1
),
010531
(
2022
).
97.
K.
Zaghib
,
F.
Brochu
,
A.
Guerfi
, and
K.
Kinoshita
,
J. Power Sources
103
(
1
),
140
(
2001
).
98.
T.
Deng
and
X.
Zhou
,
Mater. Lett.
176
,
151
(
2016
).
99.
J.-H.
Shim
and
S.
Lee
,
J. Power Sources
324
,
475
(
2016
).
100.
X.-F.
Wu
,
Z.-J.
Li
,
J.-X.
Liu
,
W.
Luo
,
J.-J.
Gaumet
, and
L.-Q.
Mai
,
Rare Met.
41
(
10
),
3446
(
2022
).
101.
H.-M.
Zhang
,
J.
Chen
,
R.
Lu
,
C.-G.
Lu
,
S.
Zhou
,
Z.
Chang
, and
A.-Q.
Pan
,
Rare Met.
42
(
2
),
438
(
2023
).
102.
C.
Yang
,
X.
Sun
,
X.
Zhang
,
J.
Li
,
J.
Ma
,
Y.
Li
,
L.
Xu
,
S.
Liu
,
J.
Yang
, and
S.
Fang
,
Carbon
176
,
242
(
2021
).
103.
B.
Biber
,
S.
Sander
,
J.
Martin
,
M.
Wohlfahrt-Mehrens
, and
M.
Mancini
,
Carbon
201
,
847
(
2023
).
104.
S.
Fischer
,
S.
Doose
,
J.
Müller
,
C.
Höfels
, and
A.
Kwade
,
Batteries
9
(
6
),
305
(
2023
).
105.
M.
Yoshio
,
H.
Wang
,
K.
Fukuda
,
T.
Umeno
,
T.
Abe
, and
Z.
Ogumi
,
J. Mater. Chem.
14
(
11
),
1754
(
2004
).
106.
L.
Fu
,
H.
Liu
,
C.
Li
,
Y.
Wu
,
E.
Rahm
,
R.
Holze
, and
H.
Wu
,
Solid State Sci.
8
(
2
),
113
(
2006
).
107.
H.
Honbo
,
K.
Takei
,
Y.
Ishii
, and
T.
Nishida
,
J. Power Sources
189
(
1
),
337
(
2009
).
108.
Y.
Hai
,
W.
Cui
,
Y.
Lin
,
P.
Han
,
H.
Chen
,
Z.
Zhu
,
C.
Li
,
B.
Yang
,
C.
Zhu
, and
J.
Xu
,
Appl. Surf. Sci.
484
,
726
(
2019
).
109.
S.-M.
Lee
,
J.
Kim
,
J.
Moon
,
K.-N.
Jung
,
J. H.
Kim
,
G.-J.
Park
,
J.-H.
Choi
,
D. Y.
Rhee
,
J.-S.
Kim
, and
J.-W.
Lee
,
Nat. Commun.
12
(
1
),
39
(
2021
).
110.
W.
Cai
,
C.
Yan
,
Y.-X.
Yao
,
L.
Xu
,
R.
Xu
,
L.-L.
Jiang
,
J.-Q.
Huang
, and
Q.
Zhang
,
Small Struct.
1
(
1
),
2000010
(
2020
).
111.
D. S.
Kim
,
D. J.
Chung
,
J.
Bae
,
G.
Jeong
, and
H.
Kim
,
Electrochim. Acta
258
,
336
(
2017
).
112.
D. S.
Kim
,
Y. E.
Kim
, and
H.
Kim
,
J. Power Sources
422
,
18
(
2019
).
113.
J.
Zhou
,
K.
Ma
,
X.
Lian
,
Q.
Shi
,
J.
Wang
,
Z.
Chen
,
L.
Guo
,
Y.
Liu
,
A.
Bachmatiuk
, and
J.
Sun
,
Small
18
(
15
),
2107460
(
2022
).
114.
B.
Jiang
,
B.
Luo
,
J.
Li
,
P.
Peng
,
J.
Chen
,
L.
Chu
,
Y.
Li
, and
M.
Li
,
Ceram. Int.
45
(
1
),
160
(
2019
).
115.
Q.
Cheng
and
Y.
Zhang
,
J. Electrochem. Soc.
165
(
5
),
A1104
(
2018
).
116.
Y.
Ito
,
C.
Lee
,
Y.
Miyahara
,
S.
Yamazaki
,
T.
Yamada
,
K.
Hiraga
,
T.
Abe
, and
K.
Miyazaki
,
Chem. Mater.
34
(
19
),
8711
(
2022
).
117.
P.
Du
,
X.
Fan
,
B.
Zhang
,
L.
Cao
,
J.
Ren
,
X.
Ou
,
X.
Guo
, and
Q.
Liu
,
Energy Storage Mater.
50
,
648
(
2022
).
118.
T. M.
Gür
,
Energy Environ. Sci.
11
(
10
),
2696
(
2018
).
119.
D.
Wei
and
J.
Kivioja
,
Nanoscale
5
(
21
),
10108
(
2013
).
120.
H.
Li
and
H.
Zhou
,
Chem. Commun.
48
(
9
),
1201
(
2012
).
121.
Y.
Gao
,
J.
Zhang
,
Y.
Chen
, and
C.
Wang
,
Surf. Interfaces
24
,
101089
(
2021
).
122.
Y.-J.
Han
,
J.
Kim
,
J.-S.
Yeo
,
J. C.
An
,
I.-P.
Hong
,
K.
Nakabayashi
,
J.
Miyawaki
,
J.-D.
Jung
, and
S.-H.
Yoon
,
Carbon
94
,
432
(
2015
).
123.
S.
Yoon
,
H.
Kim
, and
S. M.
Oh
,
J. Power Sources
94
(
1
),
68
(
2001
).
124.
Y.
Lu
,
D.
Kocaefe
,
Y.
Kocaefe
,
X.-A.
Huang
, and
D.
Bhattacharyay
,
Fuel
199
,
587
(
2017
).
125.
M. A.
Azam
,
N. E.
Safie
,
A. S.
Ahmad
,
N. A.
Yuza
, and
N. S. A.
Zulkifli
,
J. Energy Storage
33
,
102096
(
2021
).
126.
C.
Jiang
,
W.
Ye
,
Z.
Feng
,
M.
He
, and
D.
Xiong
,
Chem. Phys. Lett.
830
,
140802
(
2023
).
127.
S.
Huang
,
L.-Z.
Cheong
,
D.
Wang
, and
C.
Shen
,
ACS Appl. Mater. Interfaces
9
(
28
),
23672
(
2017
).
128.
L.
Xu
,
X.
Zhang
,
R.
Chen
,
F.
Wu
, and
L.
Li
,
Small
18
(
7
),
2105897
(
2022
).
129.
C.
Bao
,
Z.
Liu
,
Z.
Yang
,
L.
Shi
,
C.
He
,
H.
Chen
,
Y.
He
,
Q.
Liu
,
L.
Yang
, and
H.
Liu
,
Electrochim. Acta
463
,
142821
(
2023
).
130.
L.
Yang
,
T.
Dai
,
Y.
Wang
,
D.
Xie
,
R. L.
Narayan
,
J.
Li
, and
X.
Ning
,
Nano Energy
30
,
885
(
2016
).
131.
H.
Huang
,
E.
Kelder
, and
J.
Schoonman
,
J. Power Sources
97–98
,
114
(
2001
).
132.
K. H.
Chen
,
V.
Goel
,
M. J.
Namkoong
,
M.
Wied
,
S.
Müller
,
V.
Wood
,
J.
Sakamoto
,
K.
Thornton
, and
N. P.
Dasgupta
,
Adv. Energy Mater.
11
(
5
),
2003336
(
2021
).
133.
Y.
Wang
,
J.
Yi
, and
Y.
Xia
,
Adv. Energy Mater.
2
(
7
),
830
(
2012
).
134.
J.
Wen
,
Y.
Yu
, and
C.
Chen
,
Mater. Express
2
(
3
),
197
(
2012
).
135.
A.
Wang
,
S.
Kadam
,
H.
Li
,
S.
Shi
, and
Y.
Qi
,
npj Comput. Mater.
4
(
1
),
15
(
2018
).
136.
Y.
Yamada
,
K.
Furukawa
,
K.
Sodeyama
,
K.
Kikuchi
,
M.
Yaegashi
,
Y.
Tateyama
, and
A.
Yamada
,
J. Am. Chem. Soc.
136
(
13
),
5039
(
2014
).
137.
C.
Sun
,
X.
Ji
,
S.
Weng
,
R.
Li
,
X.
Huang
,
C.
Zhu
,
X.
Xiao
,
T.
Deng
,
L.
Fan
, and
L.
Chen
,
Adv. Mater.
34
(
43
),
2206020
(
2022
).
138.
Y.
Yang
,
Z.
Fang
,
Y.
Yin
,
Y.
Cao
,
Y.
Wang
,
X.
Dong
, and
Y.
Xia
,
Angew. Chem.
134
(
36
),
e202208345
(
2022
).
139.
X.
Yue
,
J.
Zhang
,
Y.
Dong
,
Y.
Chen
,
Z.
Shi
,
X.
Xu
,
X.
Li
, and
Z.
Liang
,
Angew. Chem., Int. Ed.
62
(
19
),
e202302285
(
2023
).
140.
X.
Liu
,
X.
Shen
,
L.
Luo
,
F.
Zhong
,
X.
Ai
,
H.
Yang
, and
Y.
Cao
,
ACS Energy Lett.
6
(
12
),
4282
(
2021
).
141.
N. P.
Pieczonka
,
V.
Borgel
,
B.
Ziv
,
N.
Leifer
,
V.
Dargel
,
D.
Aurbach
,
J. H.
Kim
,
Z.
Liu
,
X.
Huang
, and
S. A.
Krachkovskiy
,
Adv. Energy Mater.
5
(
23
),
1501008
(
2015
).
142.
Y.-B.
Wang
,
Q.
Yang
,
X.
Guo
,
S.
Yang
,
A.
Chen
,
G.-J.
Liang
, and
C.-Y.
Zhi
,
Rare Met.
41
,
745
761
(
2022
).
143.
M. F.
Lagadec
,
R.
Zahn
, and
V.
Wood
,
Nat. Energy
4
(
1
),
16
(
2018
).
144.
H.
Zheng
,
J.
Li
,
X.
Song
,
G.
Liu
, and
V. S.
Battaglia
,
Electrochim. Acta
71
,
258
(
2012
).
145.
R.
Zhao
,
J.
Liu
, and
J.
Gu
,
Appl. Energy
139
,
220
(
2015
).
146.
Y.
Kim
,
A.
Drews
,
R.
Chandrasekaran
,
T.
Miller
, and
J.
Sakamoto
,
Ionics
24
,
2935
(
2018
).
147.
Q.
Shi
,
C.
Lu
,
Y.
Cao
,
Y.
Hao
,
A.
Bachmatiuk
, and
M. H.
Rümmeli
,
Mater. Chem. Front.
7
(
7
),
1298
(
2023
).
148.
P.
Zhu
,
D.
Gastol
,
J.
Marshall
,
R.
Sommerville
,
V.
Goodship
, and
E.
Kendrick
,
J. Power Sources
485
,
229321
(
2021
).
149.
S.
Chen
,
Q.
Wang
,
C.
Liu
,
J.
Zhang
,
L.
Wang
,
J.-L.
Luo
, and
X.-Z.
Fu
,
ACS Sustainable Chem. Eng.
11
(
36
),
13483
(
2023
).
150.
Y.
Chen
,
K.
Fu
,
S.
Zhu
,
W.
Luo
,
Y.
Wang
,
Y.
Li
,
E.
Hitz
,
Y.
Yao
,
J.
Dai
, and
J.
Wan
,
Nano Lett.
16
(
6
),
3616
(
2016
).
151.
C.-P.
Yang
,
Y.-X.
Yin
,
S.-F.
Zhang
,
N.-W.
Li
, and
Y.-G.
Guo
,
Nat. Commun.
6
(
1
),
8058
(
2015
).
152.
J.
Liu
,
M.
Yue
,
S.
Wang
,
Y.
Zhao
, and
J.
Zhang
,
Adv. Funct. Mater.
32
(
8
),
2107769
(
2022
).
153.
J.
Kasnatscheew
,
T.
Placke
,
B.
Streipert
,
S.
Rothermel
,
R.
Wagner
,
P.
Meister
,
I. C.
Laskovic
, and
M.
Winter
,
J. Electrochem. Soc.
164
(
12
),
A2479
(
2017
).
154.
W.
Shen
,
T. T.
Vo
, and
A.
Kapoor
, paper presented at the
7th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
2012
.
155.
Y.
Li
,
K.
Li
,
Y.
Xie
,
J.
Liu
,
C.
Fu
, and
B.
Liu
,
Renewable Energy
146
,
2688
(
2020
).
156.
S.
Wang
,
P.
Takyi-Aninakwa
,
S.
Jin
,
C.
Yu
,
C.
Fernandez
, and
D.-I.
Stroe
,
Energy
254
,
124224
(
2022
).
157.
S.
Li
,
Q.
Wu
,
D.
Zhang
,
Z.
Liu
,
Y.
He
,
Z. L.
Wang
, and
C.
Sun
,
Nano Energy
56
,
555
(
2019
).
158.
M.
Abdel-Monem
,
K.
Trad
,
N.
Omar
,
O.
Hegazy
,
P.
Van den Bossche
, and
J.
Van Mierlo
,
Energy
120
,
179
(
2017
).
159.
S. S.
Zhang
,
J. Power Sources
161
(
2
),
1385
(
2006
).
160.
C.
Zhang
,
H.
Wang
, and
L.
Wu
,
Energy
263
,
126109
(
2023
).
161.
A.
Yadu
,
S. S.
Brahmadathan
,
S.
Agarwal
,
D.
Sreevatsa
,
S.
Lee
, and
Y.
Kim
, “On-device personalized charging strategy with an aging model for lithium-ion batteries using deep reinforcement learning,”
IEEE Trans. Autom. Sci. Eng.
(published online
2023
).
162.
F.
Wang
,
X.
Liao
,
H.
Wang
,
Y.
Zhao
,
J.
Mao
, and
D. G.
Truhlar
,
Interdiscip. Mater.
1
(
4
),
517
(
2022
).
163.
J.
Yan
,
H.
Huang
,
J.
Tong
,
W.
Li
,
X.
Liu
,
H.
Zhang
,
H.
Huang
, and
W.
Zhou
,
Interdiscip. Mater.
1
(
3
),
330
(
2022
).
164.
R.
Li
,
S.
O'Kane
,
M.
Marinescu
, and
G. J.
Offer
,
J. Electrochem. Soc.
169
(
6
),
060516
(
2022
).
165.
S. K.
Heiskanen
,
J.
Kim
, and
B. L.
Lucht
,
Joule
3
(
10
),
2322
(
2019
).
166.
H.
Du
,
S.
Feng
,
W.
Luo
,
L.
Zhou
, and
L.
Mai
,
J. Mater. Sci. Technol.
55
,
1
(
2020
).
You do not currently have access to this content.