We have investigated the room temperature spin coherence properties of the axial NVkk center in 4H–SiC by pulsed high-frequency electron spin resonance and electron-nuclear double resonance techniques. Our results show a remarkable phase coherence time (TCoherence) of 25.3 μs at room temperature for ensembles of NV centers. We demonstrate precise control over NV defect spins through Rabi oscillations, which exhibit a linear response to microwave power. Additionally, the demonstrated room temperature readout of the intrinsic 14N nuclear spin (I = 1) underscores its potential as a robust nuclear spin memory resource, further positioning NV defects in 4H–SiC as an advanced platform for implementing cutting-edge quantum technologies in semiconductor systems.

1.
D.
Awschalom
,
R.
Hanson
,
J.
Wrachtrup
et al, “
Quantum technologies with optically interfaced solid-state spins
,”
Nat. Photonics
12
,
516
527
(
2018
).
2.
R.
Schirhagl
,
K.
Chang
,
M.
Loretz
et al, “
Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology
,”
Annu. Rev. Phys. Chem.
65
(
1
),
83
105
(
2014
).
3.
P.
Maletinsky
,
S.
Hong
,
M. S.
Grinolds
et al, “
A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres
,”
Nat. Nanotechnol.
7
,
320
324
(
2012
).
4.
A.
Jarmola
et al, “
Demonstration of diamond nuclear spin gyroscope
,”
Sci. Adv.
7
,
eabl3840
(
2021
).
5.
S. A.
Tarasenko
,
A. V.
Poshakinskiy
,
D.
Simi
et al, “
Spin and optical properties of silicon vacancies in silicon carbide
,”
Phys. Status Solidi B
255
,
1700258
(
2018
).
6.
J.
Wrachtrup
and
F.
Jelezko
, “
Processing quantum information in diamond
,”
J. Phys.
18
(
21
),
S807
(
2006
).
7.
P. C.
Humphreys
,
N.
Kalb
,
J. P. J.
Morits
et al, “
Deterministic delivery of remote entanglement on a quantum network
,”
Nature
558
,
268
273
(
2018
).
8.
G.
Balasubramanian
,
P.
Neumann
,
D.
Twitchen
et al, “
Ultralong spin coherence time in isotopically engineered diamond
,”
Nat. Mater.
8
,
383
387
(
2009
).
9.
F. F.
Murzakhanov
,
B. V.
Yavkin
, and
G. V.
Mamin
, “
Hyperfine and nuclear quadrupole splitting of the NV- ground state in 4 H-SiC
,”
Phys. Rev. B
103
,
245203
(
2021
).
10.
Q.
Li
,
J.
Wang
,
F.
Yan
et al, “
Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast
,”
Natl. Sci. Rev.
9
(
5
),
nwab122
(
2022
).
11.
C.
Babin
,
R.
Stöhr
,
N.
Morioka
et al, “
Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence
,”
Nat. Mater.
21
(
1
),
67
73
(
2022
).
12.
L.
Robledo
,
L.
Childress
,
H.
Bernien
et al, “
High-fidelity projective read-out of a solid-state spin quantum register
,”
Nature
477
,
574
578
(
2011
).
13.
C. E.
Bradley
,
J.
Randall
,
M. H.
Abobeih
et al, “
A ten-qubit solid-state spin register with quantum memory up to one minute
,”
Phys. Rev. X
9
,
031045
(
2019
).
14.
G.
Wang
,
A. R.
Barr
,
H.
Tang
et al, “
Characterizing temperature and strain variations with qubit ensembles for their robust coherence protection
,”
Phys. Rev. Lett.
131
,
043602
(
2023
).
15.
V. V.
Soshenko
,
S. V.
Bolshedvorskii
,
O.
Rubinas
et al, “
Nuclear spin gyroscope based on the nitrogen vacancy center in diamond
,”
Phys. Rev. Lett.
126
,
197702
(
2021
).
16.
P.
Siyushev
,
M.
Nesladek
,
E.
Bourgeois
et al, “
Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond
,”
Science
363
,
728
731
(
2019
).
17.
M.
Gulka
,
D.
Wirtitsch
,
V.
Ivády
et al, “
Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins
,”
Nat. Commun.
12
,
4421
(
2021
).
18.
M.
Niethammer
,
M.
Widmann
,
T.
Rendler
et al, “
Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
,”
Nat. Commun.
10
,
5569
(
2019
).
19.
K.
Khazen
and
H. J.
von Bardeleben
, “
NV-centers in SiC: A solution for quantum computing technology
,”
Front. Quantum Sci. Technol.
2
,
1115039
(
2023
).
20.
H. J.
von Bardeleben
,
J. L.
Cantin
,
A.
Csóré
et al, “
NV centers in 3C, 4H, and 6H silicon carbide: A variable platform for solid-state qubits and nanosensors
,”
Phys. Rev. B
94
,
121202(R)
(
2016
).
21.
J.-F.
Wang
,
F.-F.
Yan
,
Q.
Li
et al, “
Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature
,”
Phys. Rev. Lett.
124
,
223601
(
2020
).
22.
Z.
Jiang
,
H.
Cai
,
R.
Cernansky
,
X.
Liu
, and
W.
Gao
, “
Quantum sensing of radio-frequency signal with NV centers in SiC
,”
Sci. Adv.
9
(
20
),
eadg2080
(
2023
).
23.
Z.
Mu
,
S. A.
Zargaleh
,
H. J.
von Bardeleben
et al, “
Coherent manipulation with resonant excitation and single emitter creation of nitrogen vacancy centers in 4H silicon carbide
,”
Nano Lett.
20
,
6142
6147
(
2020
).
24.
A.
Jarmola
,
I.
Fescenko
,
V. M.
Acosta
et al, “
Robust optical readout and characterization of nuclear spin transitions in nitrogen-vacancy ensembles in diamond
,”
Phys. Rev. Res.
2
,
023094
(
2020
).
25.
V. V.
Soshenko
,
V. V.
Vorobyov
,
S. V.
Bolshedvorskii
et al, “
Temperature drift rate for nuclear terms of the NV-center ground-state Hamiltonian
,”
Phys. Rev. B
102
,
125133
(
2020
).
26.
H. J.
von Bardeleben
,
J. L.
Cantin
,
E.
Rauls
et al, “
Identification and magneto-optical properties of the NV center in 4H-SiC
,”
Phys. Rev. B
92
,
064104
(
2015
).
27.
F. F.
Murzakhanov
,
M. A.
Sadovnikova
,
G. V.
Mamin
et al, “
14N Hyperfine and nuclear interactions of axial and basal NV centers in 4H-SiC: A high frequency (94 GHz) ENDOR study
,”
J. Appl. Phys.
134
,
123906
(
2023
).
28.
Y.
Zhu
,
B.
Kovos
,
M.
Onizhuk
et al, “
Theoretical and experimental study of the nitrogen-vacancy center in 4H-SiC
,”
Phys. Rev. Mater.
5
,
074602
(
2021
).
29.
N.
Aslam
,
G.
Waldherr
,
P.
Neumann
et al, “
Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection
,”
New J. Phys.
15
,
013064
(
2013
).
30.
G.
Wolfowicz
,
C. P.
Anderson
,
A. L.
Yeats
et al, “
Optical charge state control of spin defects in 4H-SiC
,”
Nat. Commun.
8
,
1876
(
2017
).
31.
S. A.
Zargaleh
,
B.
Eble
,
S.
Hameau
et al, “
Evidence for near-infrared photoluminescence of nitrogen vacancy centers in 4H-SiC
,”
Phys. Rev. B
94
,
060102
(
2016
).
32.
S. A.
Zargaleh
,
H. J.
von Bardeleben
,
J.-L.
Cantin
et al, “
Electron paramagnetic resonance tagged high-resolution excitation spectroscopy of NV centers in 4H-SiC
,”
Phys. Rev. B
98
,
214113
(
2018
).
33.
V. M.
Acosta
,
E.
Bauch
,
M. P.
Ledbetter
et al, “
Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications
,”
Phys. Rev. B
80
,
115202
(
2009
).
34.
T. B.
Biktagirov
,
A. N.
Smirnov
,
V. Y.
Davydov
et al, “
Strain broadening of the 1042-nm zero phonon line of the NV center in diamond: A promising spectroscopic tool for defect tomography
,”
Phys. Rev. B
96
,
075205
(
2017
).
35.
E.
Bauch
,
S.
Singh
,
J.
Lee
et al, “
Decoherence of ensembles of nitrogen-vacancy centers in diamond
,”
Phys. Rev. B
102
,
134210
(
2020
).
36.
W. F.
Koehl1
,
B. B.
Buckley
,
F. J.
Heremans
et al, “
Room temperature coherent control of defect spin qubits in silicon carbide
,”
Nature
479
,
84
87
(
2011
).
37.
V. A.
Soltamov
,
B. V.
Yavkin
,
A. N.
Anisimov
et al, “
Relaxation processes and high-field coherent spin manipulation in color center ensembles in 6H-SiC
,”
Phys. Rev. B
103
,
195201
(
2021
).
38.
B. F.
Habenicht
,
N. P.
Tani
,
M. R.
Provorse
et al, “
Two-electron Rabi oscillations in real-time time-dependent density-functional theory
,”
J. Chem. Phys.
141
,
184112
(
2014
).
39.
K.
Sato
,
S.
Nakazawa
,
S.
Nishida
et al, “
Novel applications of ESR/EPR: Quantum computing/quantum information processing
,” in
EPR of Free Radicals in Solids II: Trends in Methods and Applications, Progress in Theoretical Chemistry and Physics
edited by
A.
Lund
and
M.
Shiotani
(
Springer
,
Netherlands, Dordrecht
,
2012
), pp.
163
204
.

Supplementary Material

You do not currently have access to this content.