We fabricate superconducting quantum interference devices (SQUIDs) made of niobium-titanium nitride (NbTiN) thin films on the apex of sharp quartz capillaries. By incorporating reactive DC magnetron sputtering into the self-aligned deposition process for the SQUID-on-tip (SOT) fabrication, we produce NbTiN SOT devices with an effective diameter of ∼100 nm. The ø110 nm device has a superconducting transition temperature of 13.2 K, magnetic flux noise down to 0.7 Hz0.5 (4 K), and operating temperatures of 1.8–10 K. The developed technique enables the synthesis of nitride and other superconductors, thereby expanding the range of materials available for SOT devices.
REFERENCES
1.
W.
Wernsdorfer
,
K.
Hasselbach
,
D.
Mailly
,
B.
Barbara
,
A.
Benoit
,
L.
Thomas
, and
G.
Suran
, “
DC-SQUID magnetization measurements of single magnetic particles
,” J. Magn. Magn. Mater.
145
, 33
(1995
).2.
S. K. H.
Lama
and
D. L.
Tilbrook
, “
Development of a niobium nanosuperconducting quantum interference device for the detection of small spin population
,” Appl. Phys. Lett.
82
, 1078
(2003
).3.
Y. P.
Pan
,
J. J.
Zhu
,
Y.
Feng
,
Y. S.
Lin
,
H. B.
Wang
,
X. Y.
Liu
,
H.
Jin
,
Z.
Wang
,
L.
Chen
, and
Y. H.
Wang
, “
Improving spatial resolution of scanning SQUID microscopy with an on-chip design
,” Supercond. Sci. Technol.
34
, 115011
(2021
).4.
A. G. P.
Troeman
,
H.
Derking
,
B.
Borger
,
J.
Pleikies
,
D.
Veldhuis
, and
H.
Hilgenkamp
, “
NanoSQUIDs based on niobium constriction
,” Nano Lett.
7
, 2152
(2007
).5.
L.
Hao
,
C.
Aßmann
,
J. C.
Gallop
,
D.
Cox
,
F.
Ruede
,
O.
Kazakova
,
P.
Josephs-Franks
,
D.
Drung
, and
T.
Schurig
, “
Detection of single magnetic nanobead with a nano-superconducting quantum interference device
,” Appl. Phys. Lett.
98
, 092504
(2011
).6.
V.
Bouchiata
,
M.
Faucher
,
C.
Thirion
,
W.
Wernsdorfer
,
T.
Fournier
, and
B.
Pannetier
, “
Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films
,” Appl. Phys. Lett.
79
, 123
(2001
).7.
M.
Wyss
,
K.
Bagani
,
D.
Jetter
,
E.
Marchiori
,
A.
Vervelaki
,
B.
Gross
,
J.
Ridderbos
,
S.
Gliga
,
C.
Schönenberger
, and
M.
Poggio
, “
Magnetic, thermal, and topographic imaging with a nanometer-scale SQUID-on-lever scanning probe
,” Phys. Rev. Appl.
17
, 034002
(2022
).8.
A.
Finkler
,
Y.
Segev
,
Y.
Myasoedov
,
M. L.
Rappaport
,
L.
Ne'eman
,
D.
Vasyukov
,
E.
Zeldov
,
M. E.
Huber
,
J.
Martin
, and
A.
Yacoby
, “
Self-aligned nanoscale SQUID on a tip
,” Nano Lett.
10
, 1046
(2010
).9.
D.
Vasyukov
,
Y.
Anahory
,
L.
Embon
,
D.
Halbertal
,
J.
Cuppens
,
L. N. A.
Finkler
,
Y.
Segev
,
Y.
Myasoedov
,
M. L.
Rappaport
,
M. E.
Huber
, and
E.
Zeldov
, “
A scanning superconducting quantum interference device with single electron spin sensitivity
,” Nat. Nanotechnol.
8
, 639
(2013
).10.
Y.
Anahory
,
H. R.
Naren
,
E. O.
Lachman
,
S. B.
Sinai
,
A.
Uri
,
L.
Embon
,
E.
Yaakobi
,
Y.
Myasoedov
,
M. E.
Huber
,
R.
Klajn
, and
E.
Zeldov
, “
SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging
,” Nanoscale
12
, 3174
(2020
).11.
J. R.
Kirtly
, “
Fundamental studies of superconductors using scanning magnetic imaging
,” Rep. Prog. Phys.
73
, 126501
(2010
).12.
K.
Bagani
,
J.
Sarkar
,
A.
Uri
,
M. L.
Rappaport
,
M. E.
Huber
,
E.
Zeldov
, and
Y.
Myasoedov
, “
Sputtered MO66Re34 SQUID-on-tip for high-field magnetic and thermal nanoimaging
,” Phys. Rev. Appl.
12
, 044062
(2019
).13.
G.
Romagnoli
,
E.
Marchiori
,
K.
Bagani
, and
M.
Poggio
, “
Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering
,” Appl. Phys. Lett.
122
, 192603
(2023
).14.
S. M.
Rossnagel
, “
Sputtered atom transport processes
,” IEEE Trans. Plasma Sci.
18
, 878
(1990
).15.
A.
Shurakov
,
Y.
Lobanov
, and
G.
Goltsman
, “
Superconducting hot-electron bolometer: From the discovery of hot-electron phenomena to practical applications
,” Supercond. Sci. Technol.
29
, 023001
(2016
).16.
E. A.
Dauler
,
M. E.
Grein
,
A. J.
Kerman
,
F.
Marsili
,
S.
Miki
,
S. W.
Nam
,
M. D.
Shaw
,
H.
Terai
,
V. B.
Verma
, and
T.
Yamashita
, “
Review of superconducting nanowire single-photon detector system design options and demonstrated performance
,” Opt. Eng.
53
, 081907
(2014
).17.
N. N.
Iosad
,
B. D.
Jackson
,
S. N.
Polyakov
,
P. N.
Dmitriev
, and
T. M.
Klapwijk
, “
Reactive magnetron sputter-deposition of NbN and (Nb, Ti)N films related to sputtering source characterization and optimization
,” J. Vac. Sci. Technol. A
19
, 1840
(2001
).18.
K.
Makise
,
H.
Terai
,
M.
Takeda
,
Y.
Uzawa
, and
Z.
Wang
, “
Characterization of NbTiN thin films deposited on various substrates
,” IEEE Trans. Appl. Supercond.
21
, 139
(2011
).19.
Y. T.
Yemane
,
M. J.
Sowa
,
J.
Zhang
,
L.
Ju
,
E. W.
Deguns
,
N. C.
Strandwitz
,
F. B.
Prinz
, and
J.
Provine
, “
Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition
,” Supercond. Sci. Technol.
30
, 095010
(2017
).20.
M. V.
Burdastyh
,
S. V.
Postolova
,
T.
Proslier
,
S. S.
Ustavshikov
,
A.
Antonov
,
V. M.
Vinokur
, and
A. Y.
Mironov
, “
Superconducting phase transitions in disordered NbTiN films
,” Sci. Rep.
10
, 1471
(2020
).21.
D.
Hazra
,
N.
Tsavdaris
,
A.
Mukhtarova
,
M.
Jacquemin
,
F.
Blanchet
,
R.
Albert
,
S.
Jebari
,
A.
Grimm
,
A.
Konar
,
E.
Blanquet
,
F.
Mercier
,
C.
Chapelier
, and
M.
Hofheinz
, “
Superconducting properties of NbTiN thin films deposited by high-temperature chemical vapor deposition
,” Phys. Rev. B
97
, 144518
(2018
).22.
E.
McDaniel
, Collision Phenomena in Ionized Gases
, Wiley Series in Plasma Physics (
Wiley
,
New York
, 1964
).23.
A. T.
Bollinger
,
A.
Rogachev
,
M.
Remeika
, and
A.
Bezryadin
, “
Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires
,” Phys. Rev. B
69
, 180503(R)
(2004
).24.
J.
Hudis
,
J.
Cochran
,
G.
Franco-Rivera1
,
C. S.
Guzman
,
E.
Lochner
,
P.
Schlottmann
,
P.
Xiong
, and
I.
Chiorescu
, “
Quantum interference in asymmetric superconducting nanowire loops
,” Europhys. Lett.
138
, 16003
(2022
).25.
C.
Granata
and
A.
Vettoliere
, “
Nano superconducting quantum interference device: A powerful tool for nanoscale investigations
,” Phys. Rep.
614
, 1
–69
(2016
).26.
Y.
Shimazu
and
T.
Yokoyama
, “
Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops
,” Physica C
412–414
, 1451
(2004
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.