We fabricate superconducting quantum interference devices (SQUIDs) made of niobium-titanium nitride (NbTiN) thin films on the apex of sharp quartz capillaries. By incorporating reactive DC magnetron sputtering into the self-aligned deposition process for the SQUID-on-tip (SOT) fabrication, we produce NbTiN SOT devices with an effective diameter of ∼100 nm. The ø110 nm device has a superconducting transition temperature of 13.2 K, magnetic flux noise down to 0.7  μ Φ 0 /Hz0.5 (4 K), and operating temperatures of 1.8–10 K. The developed technique enables the synthesis of nitride and other superconductors, thereby expanding the range of materials available for SOT devices.

1.
W.
Wernsdorfer
,
K.
Hasselbach
,
D.
Mailly
,
B.
Barbara
,
A.
Benoit
,
L.
Thomas
, and
G.
Suran
, “
DC-SQUID magnetization measurements of single magnetic particles
,”
J. Magn. Magn. Mater.
145
,
33
(
1995
).
2.
S. K. H.
Lama
and
D. L.
Tilbrook
, “
Development of a niobium nanosuperconducting quantum interference device for the detection of small spin population
,”
Appl. Phys. Lett.
82
,
1078
(
2003
).
3.
Y. P.
Pan
,
J. J.
Zhu
,
Y.
Feng
,
Y. S.
Lin
,
H. B.
Wang
,
X. Y.
Liu
,
H.
Jin
,
Z.
Wang
,
L.
Chen
, and
Y. H.
Wang
, “
Improving spatial resolution of scanning SQUID microscopy with an on-chip design
,”
Supercond. Sci. Technol.
34
,
115011
(
2021
).
4.
A. G. P.
Troeman
,
H.
Derking
,
B.
Borger
,
J.
Pleikies
,
D.
Veldhuis
, and
H.
Hilgenkamp
, “
NanoSQUIDs based on niobium constriction
,”
Nano Lett.
7
,
2152
(
2007
).
5.
L.
Hao
,
C.
Aßmann
,
J. C.
Gallop
,
D.
Cox
,
F.
Ruede
,
O.
Kazakova
,
P.
Josephs-Franks
,
D.
Drung
, and
T.
Schurig
, “
Detection of single magnetic nanobead with a nano-superconducting quantum interference device
,”
Appl. Phys. Lett.
98
,
092504
(
2011
).
6.
V.
Bouchiata
,
M.
Faucher
,
C.
Thirion
,
W.
Wernsdorfer
,
T.
Fournier
, and
B.
Pannetier
, “
Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films
,”
Appl. Phys. Lett.
79
,
123
(
2001
).
7.
M.
Wyss
,
K.
Bagani
,
D.
Jetter
,
E.
Marchiori
,
A.
Vervelaki
,
B.
Gross
,
J.
Ridderbos
,
S.
Gliga
,
C.
Schönenberger
, and
M.
Poggio
, “
Magnetic, thermal, and topographic imaging with a nanometer-scale SQUID-on-lever scanning probe
,”
Phys. Rev. Appl.
17
,
034002
(
2022
).
8.
A.
Finkler
,
Y.
Segev
,
Y.
Myasoedov
,
M. L.
Rappaport
,
L.
Ne'eman
,
D.
Vasyukov
,
E.
Zeldov
,
M. E.
Huber
,
J.
Martin
, and
A.
Yacoby
, “
Self-aligned nanoscale SQUID on a tip
,”
Nano Lett.
10
,
1046
(
2010
).
9.
D.
Vasyukov
,
Y.
Anahory
,
L.
Embon
,
D.
Halbertal
,
J.
Cuppens
,
L. N. A.
Finkler
,
Y.
Segev
,
Y.
Myasoedov
,
M. L.
Rappaport
,
M. E.
Huber
, and
E.
Zeldov
, “
A scanning superconducting quantum interference device with single electron spin sensitivity
,”
Nat. Nanotechnol.
8
,
639
(
2013
).
10.
Y.
Anahory
,
H. R.
Naren
,
E. O.
Lachman
,
S. B.
Sinai
,
A.
Uri
,
L.
Embon
,
E.
Yaakobi
,
Y.
Myasoedov
,
M. E.
Huber
,
R.
Klajn
, and
E.
Zeldov
, “
SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging
,”
Nanoscale
12
,
3174
(
2020
).
11.
J. R.
Kirtly
, “
Fundamental studies of superconductors using scanning magnetic imaging
,”
Rep. Prog. Phys.
73
,
126501
(
2010
).
12.
K.
Bagani
,
J.
Sarkar
,
A.
Uri
,
M. L.
Rappaport
,
M. E.
Huber
,
E.
Zeldov
, and
Y.
Myasoedov
, “
Sputtered MO66Re34 SQUID-on-tip for high-field magnetic and thermal nanoimaging
,”
Phys. Rev. Appl.
12
,
044062
(
2019
).
13.
G.
Romagnoli
,
E.
Marchiori
,
K.
Bagani
, and
M.
Poggio
, “
Fabrication of Nb and MoGe SQUID-on-tip probes by magnetron sputtering
,”
Appl. Phys. Lett.
122
,
192603
(
2023
).
14.
S. M.
Rossnagel
, “
Sputtered atom transport processes
,”
IEEE Trans. Plasma Sci.
18
,
878
(
1990
).
15.
A.
Shurakov
,
Y.
Lobanov
, and
G.
Goltsman
, “
Superconducting hot-electron bolometer: From the discovery of hot-electron phenomena to practical applications
,”
Supercond. Sci. Technol.
29
,
023001
(
2016
).
16.
E. A.
Dauler
,
M. E.
Grein
,
A. J.
Kerman
,
F.
Marsili
,
S.
Miki
,
S. W.
Nam
,
M. D.
Shaw
,
H.
Terai
,
V. B.
Verma
, and
T.
Yamashita
, “
Review of superconducting nanowire single-photon detector system design options and demonstrated performance
,”
Opt. Eng.
53
,
081907
(
2014
).
17.
N. N.
Iosad
,
B. D.
Jackson
,
S. N.
Polyakov
,
P. N.
Dmitriev
, and
T. M.
Klapwijk
, “
Reactive magnetron sputter-deposition of NbN and (Nb, Ti)N films related to sputtering source characterization and optimization
,”
J. Vac. Sci. Technol. A
19
,
1840
(
2001
).
18.
K.
Makise
,
H.
Terai
,
M.
Takeda
,
Y.
Uzawa
, and
Z.
Wang
, “
Characterization of NbTiN thin films deposited on various substrates
,”
IEEE Trans. Appl. Supercond.
21
,
139
(
2011
).
19.
Y. T.
Yemane
,
M. J.
Sowa
,
J.
Zhang
,
L.
Ju
,
E. W.
Deguns
,
N. C.
Strandwitz
,
F. B.
Prinz
, and
J.
Provine
, “
Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition
,”
Supercond. Sci. Technol.
30
,
095010
(
2017
).
20.
M. V.
Burdastyh
,
S. V.
Postolova
,
T.
Proslier
,
S. S.
Ustavshikov
,
A.
Antonov
,
V. M.
Vinokur
, and
A. Y.
Mironov
, “
Superconducting phase transitions in disordered NbTiN films
,”
Sci. Rep.
10
,
1471
(
2020
).
21.
D.
Hazra
,
N.
Tsavdaris
,
A.
Mukhtarova
,
M.
Jacquemin
,
F.
Blanchet
,
R.
Albert
,
S.
Jebari
,
A.
Grimm
,
A.
Konar
,
E.
Blanquet
,
F.
Mercier
,
C.
Chapelier
, and
M.
Hofheinz
, “
Superconducting properties of NbTiN thin films deposited by high-temperature chemical vapor deposition
,”
Phys. Rev. B
97
,
144518
(
2018
).
22.
E.
McDaniel
,
Collision Phenomena in Ionized Gases
, Wiley Series in Plasma Physics (
Wiley
,
New York
,
1964
).
23.
A. T.
Bollinger
,
A.
Rogachev
,
M.
Remeika
, and
A.
Bezryadin
, “
Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires
,”
Phys. Rev. B
69
,
180503(R)
(
2004
).
24.
J.
Hudis
,
J.
Cochran
,
G.
Franco-Rivera1
,
C. S.
Guzman
,
E.
Lochner
,
P.
Schlottmann
,
P.
Xiong
, and
I.
Chiorescu
, “
Quantum interference in asymmetric superconducting nanowire loops
,”
Europhys. Lett.
138
,
16003
(
2022
).
25.
C.
Granata
and
A.
Vettoliere
, “
Nano superconducting quantum interference device: A powerful tool for nanoscale investigations
,”
Phys. Rep.
614
,
1
69
(
2016
).
26.
Y.
Shimazu
and
T.
Yokoyama
, “
Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops
,”
Physica C
412–414
,
1451
(
2004
).
You do not currently have access to this content.