Magnetic skyrmions, as scalable and nonvolatile spin textures, can dynamically interact with fields and currents, making them promising for unconventional computing. This paper presents a neuromorphic device based on skyrmion manipulation chambers to implement spike-timing-dependent plasticity (STDP), a mechanism for unsupervised learning in brain-inspired computing. STDP adjusts synaptic weights based on the timing of pre-synaptic and post-synaptic spikes. The proposed three-chamber design encodes synaptic weight in the number of skyrmions in the center chamber, with left and right chambers for pre- and post-synaptic spikes, respectively. Micromagnetic simulations demonstrate that the timing between applied currents across the chambers controls the final skyrmion count (weight). The device exhibits adaptability and learning capabilities by manipulating chamber parameters, mimicking Hebbian and dendritic location-based plasticity. The device's ability to maintain state post-write highlights its potential for advancing adaptable neuromorphic devices.

1.
A.
Serb
,
J.
Bill
,
A.
Khiat
,
R.
Berdan
,
R.
Legenstein
, and
T.
Prodromakis
, “
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
,”
Nat. Commun.
7
(
1
),
12611
(
2016
).
2.
G.
Milano
,
M.
Luebben
,
Z.
Ma
,
R.
Dunin-Borkowski
,
L.
Boarino
,
C. F.
Pirri
,
R.
Waser
,
C.
Ricciardi
, and
I.
Valov
, “
Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities
,”
Nat. Commun.
9
(
1
),
5151
(
2018
).
3.
C. D.
Schuman
,
T. E.
Potok
,
R. M.
Patton
,
J. D.
Birdwell
,
M. E.
Dean
,
G. S.
Rose
, and
J. S.
Plank
, “
A survey of neuromorphic computing and neural networks in hardware
,” arXiv:1705.06963 (
2017
).
4.
G.
Indiveri
,
B.
Linares-Barranco
,
T. J.
Hamilton
,
A.
van Schaik
,
R.
Etienne-Cummings
,
T.
Delbruck
,
S.-C.
Liu
,
P.
Dudek
,
P.
Häfliger
,
S.
Renaud
,
J.
Schemmel
,
G.
Cauwenberghs
,
J.
Arthur
,
K.
Hynna
,
F.
Folowosele
,
S.
Saïghi
,
T.
Serrano-Gotarredona
,
J.
Wijekoon
,
Y.
Wang
, and
K.
Boahen
, “
Neuromorphic silicon neuron circuits
,”
Front. Neurosci.
5
,
73
(
2011
).
5.
M.
Yao
,
O.
Richter
,
G.
Zhao
,
N.
Qiao
,
Y.
Xing
,
D.
Wang
,
T.
Hu
,
W.
Fang
,
T.
Demirci
,
M.
De Marchi
,
L.
Deng
,
T.
Yan
,
C.
Nielsen
,
S.
Sheik
,
C.
Wu
,
Y.
Tian
,
B.
Xu
, and
G.
Li
, “
Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip
,”
Nat. Commun.
15
(
1
),
4464
(
2024
).
6.
G. Q.
Bi
and
M. M.
Poo
, “
Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
,”
J. Neurosci.
18
(
24
),
10464
10472
(
1998
).
7.
A.
Morrison
,
M.
Diesmann
, and
W.
Gerstner
, “
Phenomenological models of synaptic plasticity based on spike timing
,”
Biol. Cybern.
98
(
6
),
459
(
2008
).
8.
R. C.
Malenka
and
M. F.
Bear
, “
LTP and LTD: An embarrassment of riches
,”
Neuron
44
(
1
),
5
21
(
2004
).
9.
N.
Caporale
and
Y.
Dan
, “
Spike timing-dependent plasticity: A Hebbian learning rule
,”
Annu. Rev. Neurosci.
31
,
25
46
(
2008
).
10.
R. C.
Froemke
and
Y.
Dan
, “
Spike-timing-dependent synaptic modification induced by natural spike trains
,”
Nature
416
(
6879
),
433
438
(
2002
).
11.
P.
Panda
,
J. M.
Allred
,
S.
Ramanathan
, and
K.
Roy
, “
ASP: Learning to forget with adaptive synaptic plasticity in spiking neural networks
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
8
(
1
),
51
64
(
2018
).
12.
J. F.
Hunzinger
,
V. H.
Chan
, and
R. C.
Froemke
, “
Learning complex temporal patterns with resource-dependent spike timing-dependent plasticity
,”
J. Neurophysiol.
108
(
2
),
551
(
2012
).
13.
Z.
Bing
,
I.
Baumann
,
Z.
Jiang
,
K.
Huang
,
C.
Cai
, and
A.
Knoll
, “
Supervised learning in SNN via reward-modulated spike-timing-dependent plasticity for a target reaching vehicle
,”
Front. Neurorobot.
13
,
18
(
2019
).
14.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
,
F.
Akopyan
,
B. L.
Jackson
,
N.
Imam
,
C.
Guo
,
Y.
Nakamura
,
B.
Brezzo
,
I.
Vo
,
S. K.
Esser
,
R.
Appuswamy
,
B.
Taba
,
A.
Amir
,
M. D.
Flickner
,
W. P.
Risk
,
R.
Manohar
, and
D. S.
Modha
, “
A million spiking-neuron integrated circuit with a scalable communication network and interface
,”
Science
345
(
6197
),
668
673
(
2014
).
15.
M.
Davies
,
N.
Srinivasa
,
T.-H.
Lin
,
G.
Chinya
,
Y.
Cao
,
S. H.
Choday
,
G.
Dimou
,
P.
Joshi
,
N.
Imam
,
S.
Jain
,
Y.
Liao
,
C.-K.
Lin
,
A.
Lines
,
R.
Liu
,
D.
Mathaikutty
,
S.
McCoy
,
A.
Paul
,
J.
Tse
,
G.
Venkataramanan
,
Y.-H.
Weng
,
A.
Wild
,
Y.
Yang
, and
H.
Wang
, “
Loihi: A neuromorphic manycore processor with on-chip learning
,”
IEEE Micro
38
(
1
),
82
99
(
2018
).
16.
A.
Fert
,
N.
Reyren
, and
V.
Cros
, “
Magnetic skyrmions: Advances in physics and potential applications
,”
Nat. Rev. Mater.
2
(
7
),
17031
(
2017
).
17.
J.
Zázvorka
,
F.
Jakobs
,
D.
Heinze
,
N.
Keil
,
S.
Kromin
,
S.
Jaiswal
,
K.
Litzius
,
G.
Jakob
,
P.
Virnau
,
D.
Pinna
,
K.
Everschor-Sitte
,
L.
Rózsa
,
A.
Donges
,
U.
Nowak
, and
M.
Kläui
, “
Thermal skyrmion diffusion used in a reshuffler device
,”
Nat. Nanotechnol.
14
(
7
),
658
661
(
2019
).
18.
D.
Pinna
,
F.
Abreu Araujo
,
J.-V.
Kim
,
V.
Cros
,
D.
Querlioz
,
P.
Bessiere
,
J.
Droulez
, and
J.
Grollier
, “
Skyrmion gas manipulation for probabilistic computing
,”
Phys. Rev. Appl.
9
(
6
),
064018
(
2018
).
19.
K. M.
Song
,
J.-S.
Jeong
,
B.
Pan
,
X.
Zhang
,
J.
Xia
,
S.
Cha
,
T.-E.
Park
,
K.
Kim
,
S.
Finizio
,
J.
Raabe
,
J.
Chang
,
Y.
Zhou
,
W.
Zhao
,
W.
Kang
,
H.
Ju
, and
S.
Woo
, “
Skyrmion-based artificial synapses for neuromorphic computing
,”
Nat. Electron.
3
(
3
),
148
155
(
2020
).
20.
Z.
Khodzhaev
,
E.
Turgut
, and
J. A. C.
Incorvia
, “
Analysis of skyrmion shuffling chamber stochasticity for neuromorphic computing applications
,”
IEEE Magn. Lett.
14
,
4500205
(
2023
).
21.
W.
Jiang
,
X.
Zhang
,
G.
Yu
,
W.
Zhang
,
X.
Wang
,
M.
Benjamin Jungfleisch
,
J. E.
Pearson
,
X.
Cheng
,
O.
Heinonen
,
K. L.
Wang
,
Y.
Zhou
,
A.
Hoffmann
, and
S. G. E.
te Velthuis
, “
Direct observation of the skyrmion Hall effect
,”
Nat. Phys.
13
(
2
),
162
169
(
2017
).
22.
X.
Zhang
,
Y.
Zhou
,
K. M.
Song
,
T.-E.
Park
,
J.
Xia
,
M.
Ezawa
,
X.
Liu
,
W.
Zhao
,
G.
Zhao
, and
S.
Woo
, “
Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications
,”
J. Phys.: Condens. Matter
32
(
14
),
143001
(
2020
).
23.
E.
Raimondo
,
E.
Saugar
,
J.
Barker
,
D.
Rodrigues
,
A.
Giordano
,
M.
Carpentieri
,
W.
Jiang
,
O.
Chubykalo-Fesenko
,
R.
Tomasello
, and
G.
Finocchio
, “
Temperature-gradient-driven magnetic skyrmion motion
,”
Phys. Rev. Appl.
18
(
2
),
024062
(
2022
).
24.
Y.
Huang
,
W.
Kang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Magnetic skyrmion-based synaptic devices
,”
Nanotechnology
28
(
8
),
08LT02
(
2017
).
25.
S.
Li
,
W.
Kang
,
Y.
Huang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Magnetic skyrmion-based artificial neuron device
,”
Nanotechnology
28
(
31
),
31LT01
(
2017
).
26.
S.
Qiu
,
J.
Zeng
,
X.
Han
, and
J.
Liu
, “
On-chip skyrmion synapse regulated by Oersted field
,”
AIP Adv.
14
(
3
),
035105
(
2024
).
27.
D.
Das
,
Y.
Cen
,
J.
Wang
, and
X.
Fong
, “
Bilayer-skyrmion-based design of neuron and synapse for spiking neural network
,”
Phys. Rev. Appl.
19
(
2
),
024063
(
2023
).
28.
R.
Legenstein
,
D.
Pecevski
, and
W.
Maass
, “
A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback
,”
PLoS Comput. Biol.
4
(
10
),
e1000180
(
2008
).
29.
S.
Li
,
A.
Du
,
Y.
Wang
,
X.
Wang
,
X.
Zhang
,
H.
Cheng
,
W.
Cai
,
S.
Lu
,
K.
Cao
,
B.
Pan
,
N.
Lei
,
W.
Kang
,
J.
Liu
,
A.
Fert
,
Z.
Hou
, and
W.
Zhao
, “
Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature
,”
Sci. Bull.
67
(
7
),
691
699
(
2022
).
30.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
(
10
),
107133
(
2014
).
31.
C.
Moreau-Luchaire
,
C.
Moutafis
,
N.
Reyren
,
J.
Sampaio
,
C. A. F.
Vaz
,
N. V.
Horne
,
K.
Bouzehouane
,
K.
Garcia
,
C.
Deranlot
,
P.
Warnicke
,
P.
Wohlhüter
,
J. M.
George
,
M.
Weigand
,
J.
Raabe
,
V.
Cros
, and
A.
Fert
, “
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
,”
Nat. Nanotechnol.
11
(
5
),
444
448
(
2016
).
32.
P.
Lai
,
G. P.
Zhao
,
H.
Tang
,
N.
Ran
,
S. Q.
Wu
,
J.
Xia
,
X.
Zhang
, and
Y.
Zhou
, “
An improved racetrack structure for transporting a skyrmion
,”
Sci. Rep.
7
(
1
),
45330
(
2017
).
33.
M.
Ester
,
H.-P.
Kriegel
,
J.
Sander
, and
X.
Xu
, “
A density-based algorithm for discovering clusters in large spatial databases with noise
,” in
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
(
AAAI Press
,
1996
), pp.
226
231
.
34.
J. C.
Zhang
,
P. M.
Lau
, and
G. Q.
Bi
, “
Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
31
),
13028
13033
(
2009
).
35.
L.
Speranza
,
U. D.
Porzio
,
D.
Viggiano
,
A.
de Donato
, and
F.
Volpicelli
, “
Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control
,”
Cells.
10
(
4
),
735
(
2021
).
36.
H.
Salgado
,
G.
Köhr
, and
M.
Trevĩo
, “
Noradrenergic ‘tone’ determines dichotomous control of cortical spike-timing-dependent plasticity
,”
Sci. Rep.
2
(
1
),
417
(
2012
).
37.
Z.
Brzosko
,
W.
Schultz
, and
O.
Paulsen
, “
Retroactive modulation of spike timingdependent plasticity by dopamine
,”
eLife
4
,
e09685
(
2015
).
38.
S.
Zannone
,
Z.
Brzosko
,
O.
Paulsen
, and
C.
Clopath
, “
Acetylcholine-modulated plasticity in reward-driven navigation: A computational study
,”
Sci. Rep.
8
(
1
),
9486
(
2018
).
39.
R. C.
Froemke
,
M. M.
Poo
, and
Y.
Dan
, “
Spike-timing-dependent synaptic plasticity depends on dendritic location
,”
Nature
434
(
7030
),
221
225
(
2005
).
40.
C.
Denker
,
S.
Nielsen
,
E.
Lage
,
M.
Römer-Stumm
,
H.
Heyen
,
Y.
Junk
,
J.
Walowski
,
K.
Waldorf
,
M.
Münzenberg
, and
J.
McCord
, “
Size and density control of skyrmions with picometer CoFeB thickness variations—Observation of zero-field skyrmions and skyrmion merging
,”
J. Phys. D
56
(
49
),
495302
(
2023
).
You do not currently have access to this content.