The polarized electron source is a critical component in accelerator facilities such as the electron–ion collider, which requires a polarized electron gun with higher voltage and higher bunch charge than existing sources. One challenge we faced was the surface charge limit of the distributed Bragg reflector GaAs/GaAsP superlattice (DBR-SL-GaAs) photocathode. We suppressed this effect by optimizing the surface doping and heat cleaning procedures. We achieved up to 11.6 nC bunch charge of polarized electron beam. In this report, we discuss the performance of tests of a DBR-SL-GaAs photocathode in the high voltage direct current gun. Possible reasons for the observed peak quantum efficiency wavelength shift are analyzed, and we addressed it by using a wavelength tunable laser. In addition, the impact of the DBR layer and laser on the lifetime is investigated in this paper. The optimal DBR-SL-GaAs operating zone has been proposed, which gave us a long lifetime and high polarization at 30 μA operation. The success of this polarized gun will be key to the future of the nuclear sciences.

1.
H.-W.
Lin
,
E. R.
Nocera
,
F.
Olness
,
K.
Orginos
,
J.
Rojo
,
A.
Accardi
,
C.
Alexandrou
,
A.
Bacchetta
,
G.
Bozzi
,
J.-W.
Chen
et al, “
Parton distributions and lattice QCD calculations: A community white paper
,”
Prog. Part. Nucl. Phys.
100
,
107
160
(
2018
).
2.
F.
Willeke
, “
Electron ion collider conceptual design report 2021
,”
Report No. BNL-221006-2021-FORE
,
2021
.
3.
D.
Abbott
,
P.
Adderley
,
A.
Adeyemi
,
P.
Aguilera
,
M.
Ali
,
H.
Areti
,
M.
Baylac
,
J.
Benesch
,
G.
Bosson
,
B.
Cade
,
A.
Camsonne
,
L. S.
Cardman
,
J.
Clark
,
P.
Cole
,
S.
Covert
,
C.
Cuevas
,
O.
Dadoun
,
D.
Dale
,
H.
Dong
,
J.
Dumas
,
E.
Fanchini
,
T.
Forest
,
E.
Forman
,
A.
Freyberger
,
E.
Froidefond
,
S.
Golge
,
J.
Grames
,
P.
Guèye
,
J.
Hansknecht
,
P.
Harrell
,
J.
Hoskins
,
C.
Hyde
,
B.
Josey
,
R.
Kazimi
,
Y.
Kim
,
D.
Machie
,
K.
Mahoney
,
R.
Mammei
,
M.
Marton
,
J.
McCarter
,
M.
McCaughan
,
M.
McHugh
,
D.
McNulty
,
K. E.
Mesick
,
T.
Michaelides
,
R.
Michaels
,
B.
Moffit
,
D.
Moser
,
C.
Muñoz Camacho
,
J.-F.
Muraz
,
A.
Opper
,
M.
Poelker
,
J.-S.
Réal
,
L.
Richardson
,
S.
Setiniyaz
,
M.
Stutzman
,
R.
Suleiman
,
C.
Tennant
,
C.
Tsai
,
D.
Turner
,
M.
Ungaro
,
A.
Variola
,
E.
Voutier
,
Y.
Wang
,
Y.
Zhang
, and
PEPPo Collaboration
, “
Production of highly polarized positrons using polarized electrons at MeV energies
,”
Phys. Rev. Lett.
116
,
214801
(
2016
).
4.
E.
Wang
,
W.
Liu
,
V. H.
Ranjbar
,
J.
Skaritka
,
N.
Tsoupas
,
J.
Grames
, and
J.
Guo
, “
The design of a high charge polarized preinjector for the electron-ion collider
,” in
IPAC2021
,
2021
.
5.
V. H.
Ranjbar
,
M.
Blaskiewicz
,
Z. A.
Conway
,
D. M.
Gassner
,
C.
Hetzel
,
B.
Lepore
,
H.
Lovelace
III
,
I.
Marneris
,
F.
Méot
,
C.
Montag
,
J.
Skaritka
,
N.
Tsoupas
,
E.
Wang
,
F. J.
Willeke
,
J. M.
Grames
,
J.
Guo
,
F.
Lin
,
V. S.
Morozov
,
T.
Satogata
, and
D.
Sagan
, “
The RCS design status for the electron ion collider
,”
IPAC2021
,
2021
.
6.
G. A.
Mulhollan
,
A. V.
Subashiev
,
J. E.
Clendenin
,
E. L.
Garwin
,
R. E.
Kirby
,
T.
Maruyama
, and
R.
Prepost
, “
Photovoltage effects in photoemission from thin GaAs layers
,”
Phys. Lett. A
282
,
309
318
(
2001
).
7.
T.
Maruyama
,
A.
Brachmann
,
J. E.
Clendenin
,
T.
Desikan
,
E. L.
Garwin
,
R. E.
Kirby
,
D.-A.
Luh
,
J.
Turner
, and
R.
Prepost
, “
A very high charge, high polarization gradient-doped strained GaAs photocathode
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
492
,
199
211
(
2002
).
8.
K.
Togawa
,
T.
Nakanishi
,
T.
Baba
,
F.
Furuta
,
H.
Horinaka
,
T.
Ida
,
Y.
Kurihara
,
H.
Matsumoto
,
T.
Matsuyama
,
M.
Mizuta
,
S.
Okumi
,
T.
Omori
,
C.
Suzuki
,
Y.
Takeuchi
,
K.
Wada
, and
M.
Yoshioka
, “
Surface charge limit in NEA superlattice photocathodes of polarized electron source
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
414
,
431
445
(
1998
).
9.
D.
Schultz
,
R.
Alley
,
H.
Aoyagi
,
J.
Clendenin
,
J.
Frisch
,
C.
Garden
,
E.
Hoyt
,
R.
Kirby
,
L.
Klaisner
,
A.
Kulikov
,
G.
Mulhollan
,
C.
Prescott
,
P.
Saez
,
H.
Tang
,
J.
Turner
,
M.
Woods
,
D.
Yeremian
, and
M.
Zolotorev
, “
The high peak current polarized electron source of the Stanford Linear Collider
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
340
,
127
132
(
1994
).
10.
C. K.
Sinclair
,
P. A.
Adderley
,
B. M.
Dunham
,
J. C.
Hansknecht
,
P.
Hartmann
,
M.
Poelker
,
J. S.
Price
,
P. M.
Rutt
,
W. J.
Schneider
, and
M.
Steigerwald
, “
Development of a high average current polarized electron source with long cathode operational lifetime
,”
Phys. Rev. Spec. Top. Accel. Beams
10
,
023501
(
2007
).
11.
K.
Aulenbacher
,
V.
Tioukine
,
M.
Wiessner
, and
K.
Winkler
, “
Status of the polarized source at MAMI
,”
AIP Conf. Proc.
675
,
1088
1092
(
2003
).
12.
Y. A.
Mamaev
,
L. G.
Gerchikov
,
Y. P.
Yashin
,
D. A.
Vasiliev
,
V. V.
Kuzmichev
,
V. M.
Ustinov
,
A. E.
Zhukov
,
V. S.
Mikhrin
, and
A. P.
Vasiliev
, “
Optimized photocathode for spin-polarized electron sources
,”
Appl. Phys. Lett.
93
,
081114
(
2008
).
13.
T.
Nishitani
,
T.
Nakanishi
,
M.
Yamamoto
,
S.
Okumi
,
F.
Furuta
,
M.
Miyamoto
,
M.
Kuwahara
,
N.
Yamamoto
,
K.
Naniwa
,
O.
Watanabe
,
Y.
Takeda
,
H.
Kobayakawa
,
Y.
Takashima
,
H.
Horinaka
,
T.
Matsuyama
,
K.
Togawa
,
T.
Saka
,
M.
Tawada
,
T.
Omori
,
Y.
Kurihara
,
M.
Yoshioka
,
K.
Kato
, and
T.
Baba
, “
Highly polarized electrons from GaAs–GaAsP and InGaAs–AlGaAs strained-layer superlattice photocathodes
,”
J. Appl. Phys.
97
,
094907
(
2005
).
14.
T.
Maruyama
,
D.-A.
Luh
,
A.
Brachmann
,
J. E.
Clendenin
,
E. L.
Garwin
,
S.
Harvey
,
J.
Jiang
,
R. E.
Kirby
,
C. Y.
Prescott
,
R.
Prepost
, and
A. M.
Moy
, “
Systematic study of polarized electron emission from strained GaAs/GaAsP superlattice photocathodes
,”
Appl. Phys. Lett.
85
,
2640
2642
(
2004
).
15.
W.
Liu
,
Y.
Chen
,
W.
Lu
,
A.
Moy
,
M.
Poelker
,
M.
Stutzman
, and
S.
Zhang
, “
Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector
,”
Appl. Phys. Lett.
109
,
252104
(
2016
).
16.
E.
Wang
,
O.
Rahman
,
J.
Skaritka
,
W.
Liu
,
J.
Biswas
,
C.
Degen
,
P.
Inacker
,
R.
Lambiase
, and
M.
Paniccia
, “
High voltage dc gun for high intensity polarized electron source
,”
Phys. Rev. Accel. Beams
25
,
033401
(
2022
).
17.
B.
Belfore
,
A.
Masters
,
D.
Poudel
,
G.
Blume
,
S.
Polly
,
E.
Wang
,
S. M.
Hubbard
,
M.
Stutzman
,
J. M.
Grames
,
M.
Poelker
,
M.
Grau
, and
S.
Marsillac
, “
High figure of merit spin polarized electron sources grown via MOCVD
,”
Appl. Phys. Lett.
123
,
222102
(
2023
).
18.
J.
Grames
and
M.
Poelker
, “
Polarized electron sources
,” in
Polarized Beam Dynamics and Instrumentation in Particle Accelerators: USPAS Summer 2021 Spin Class Lectures
, edited by
F.
Méot
,
H.
Huang
,
V.
Ptitsyn
, and
F.
Lin
(
Springer International Publishing
,
Cham
,
2023
), pp.
261
284
.
19.
J.
Biswas
,
J.
Cen
,
M.
Gaowei
,
O.
Rahman
,
W.
Liu
,
X.
Tong
, and
E.
Wang
, “
Revisiting heat treatment and surface activation of GaAs photocathodes: In situ studies using scanning tunneling microscopy and photoelectron spectroscopy
,”
J. Appl. Phys.
128
,
045308
(
2020
).
20.
P. J.
Saez
, “
Polarization and charge limit studies of strained GaAs photocathodes
,” Ph.D. thesis (
SLAC
,
1997
).
21.
J. E.
Clendenin
, “
Polarized electron sources
,” in
Proceedings Particle Accelerator Conference
(
IEEE
,
1995
), Vol.
2
, pp.
877
881
.
22.
W.
Liu
and
E.
Wang
, “
Monte Carlo modeling of thin GaAs photocathodes
,”
J. Appl. Phys.
126
,
075706
(
2019
).
23.
E.
Wang
,
I.
Ben-Zvi
,
X.
Chang
,
Q.
Wu
,
T.
Rao
,
J.
Smedley
,
J.
Kewisch
, and
T.
Xin
, “
Systematic study of hydrogenation in a diamond amplifier
,”
Phys. Rev. Spec. Top. Accel. Beams
14
,
061302
(
2011
).
24.
D. H.
Dowell
and
J. F.
Schmerge
, “
Quantum efficiency and thermal emittance of metal photocathodes
,”
Phys. Rev. Spec. Top. Accel. Beams
12
,
074201
(
2009
).
You do not currently have access to this content.