Nearly quantum limited Josephson parametric amplifiers (JPAs) are essential components in superconducting quantum circuits. However, higher order nonlinearities of the Josephson cosine potential are known to cause gain compression, therefore limiting scalability. In an effort to reduce the fourth order, or Kerr nonlinearity, we realize a parametric amplifier with an Al-InAs superconductor–semiconductor hybrid Josephson junction (JJ). We extract the Kerr nonlinearity of the Al-InAs JJ from two different devices and show that it is three orders of magnitude lower compared to an Al- AlO X junction with identical Josephson inductance. We then demonstrate a four-wave-mixing (4WM) parametric amplifier made with an Al-InAs junction that achieves more than 20 dB of gain and −119 dBm of compression power, which outperforms single resonant JPAs based on Al junctions.

1.
A.
Roy
and
M.
Devoret
, “
Introduction to parametric amplification of quantum signals with Josephson circuits
,”
C. R. Phys.
17
,
740
755
(
2016
).
2.
J.
Aumentado
, “
Superconducting parametric amplifiers: The state of the art in Josephson parametric amplifiers
,”
IEEE Microwave
21
,
45
59
(
2020
).
3.
C.
Macklin
,
K.
O'Brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W. D.
Oliver
, and
I.
Siddiqi
, “
A near–quantum-limited Josephson traveling-wave parametric amplifier
,”
Science
350
,
307
310
(
2015
).
4.
N. E.
Frattini
,
V. V.
Sivak
,
A.
Lingenfelter
,
S.
Shankar
, and
M. H.
Devoret
, “
Optimizing the nonlinearity and dissipation of a snail parametric amplifier for dynamic range
,”
Phys. Rev. Appl.
10
,
054020
(
2018
).
5.
L.
Planat
,
R.
Dassonneville
,
J. P.
Martínez
,
F.
Foroughi
,
O.
Buisson
,
W.
Hasch-Guichard
,
C.
Naud
,
R.
Vijay
,
K.
Murch
, and
N.
Roch
, “
Understanding the saturation power of Josephson parametric amplifiers made from squid arrays
,”
Phys. Rev. Appl.
11
,
034014
(
2019
).
6.
V.
Sivak
,
N.
Frattini
,
V.
Joshi
,
A.
Lingenfelter
,
S.
Shankar
, and
M.
Devoret
, “
Kerr-free three-wave mixing in superconducting quantum circuits
,”
Phys. Rev. Appl.
11
,
054060
(
2019
).
7.
V. V.
Sivak
,
S.
Shankar
,
G.
Liu
,
J.
Aumentado
, and
M. H.
Devoret
, “
Josephson array-mode parametric amplifier
,”
Phys. Rev. Appl.
13
,
024014
(
2020
).
8.
P.
Winkel
,
I.
Takmakov
,
D.
Rieger
,
L.
Planat
,
W.
Hasch-Guichard
,
L.
Grünhaupt
,
N.
Maleeva
,
F.
Foroughi
,
F.
Henriques
,
K.
Borisov
,
J.
Ferrero
,
A. V.
Ustinov
,
W.
Wernsdorfer
,
N.
Roch
, and
I. M.
Pop
, “
Nondegenerate parametric amplifiers based on dispersion-engineered Josephson-junction arrays
,”
Phys. Rev. Appl.
13
,
024015
(
2020
).
9.
L.
Planat
,
A.
Ranadive
,
R.
Dassonneville
,
J.
Puertas Martínez
,
S.
Léger
,
C.
Naud
,
O.
Buisson
,
W.
Hasch-Guichard
,
D. M.
Basko
, and
N.
Roch
, “
Photonic-crystal Josephson traveling-wave parametric amplifier
,”
Phys. Rev. X
10
,
021021
(
2020
).
10.
T.
White
,
A.
Opremcak
,
G.
Sterling
et al, “
Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
,”
Appl. Phys. Lett.
122
,
014001
(
2023
).
11.
R.
Kaufman
,
T.
White
,
M. I.
Dykman
,
A.
Iorio
,
G.
Sterling
,
S.
Hong
,
A.
Opremcak
,
A.
Bengtsson
,
L.
Faoro
,
J. C.
Bardin
,
T.
Burger
,
R.
Gasca
, and
O.
Naaman
, “
Josephson parametric amplifier with Chebyshev gain profile and high saturation
,”
Phys. Rev. Appl.
20
,
054058
(
2023
).
12.
M.
Malnou
,
M.
Vissers
,
J.
Wheeler
,
J.
Aumentado
,
J.
Hubmayr
,
J.
Ullom
, and
J.
Gao
, “
Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance
,”
PRX Quantum
2
,
010302
(
2021
).
13.
D. J.
Parker
,
M.
Savytskyi
,
W.
Vine
,
A.
Laucht
,
T.
Duty
,
A.
Morello
,
A. L.
Grimsmo
, and
J. J.
Pla
, “
Degenerate parametric amplification via three-wave mixing using kinetic inductance
,”
Phys. Rev. Appl.
17
,
034064
(
2022
).
14.
L.
Casparis
,
M. R.
Connolly
,
M.
Kjaergaard
,
N. J.
Pearson
,
A.
Kringhøj
,
T. W.
Larsen
,
F.
Kuemmeth
,
T.
Wang
,
C.
Thomas
,
S.
Gronin
et al, “
Superconducting gatemon qubit based on a proximitized two-dimensional electron gas
,”
Nat. Nanotechnol.
13
,
915
919
(
2018
).
15.
J.
O'Connell Yuan
,
K. S.
Wickramasinghe
,
W. M.
Strickland
,
M. C.
Dartiailh
,
K.
Sardashti
,
M.
Hatefipour
, and
J.
Shabani
, “
Epitaxial superconductor-semiconductor two-dimensional systems for superconducting quantum circuits
,”
J. Vac. Sci. Technol., A
39
,
033407
(
2021
).
16.
W. M.
Strickland
,
B. H.
Elfeky
,
J. O.
Yuan
,
W. F.
Schiela
,
P.
Yu
,
D.
Langone
,
M. G.
Vavilov
,
V. E.
Manucharyan
, and
J.
Shabani
, “
Superconducting resonators with voltage-controlled frequency and nonlinearity
,”
Phys. Rev. Appl.
19
,
034021
(
2023
).
17.
J.
Sarkar
,
K. V.
Salunkhe
,
S.
Mandal
,
S.
Ghatak
,
A. H.
Marchawala
,
I.
Das
,
K.
Watanabe
,
T.
Taniguchi
,
R.
Vijay
, and
M. M.
Deshmukh
, “
Quantum-noise-limited microwave amplification using a graphene Josephson junction
,”
Nat. Nanotechnol.
17
,
1147
1152
(
2022
).
18.
G.
Butseraen
,
A.
Ranadive
,
N.
Aparicio
,
K.
Rafsanjani Amin
,
A.
Juyal
,
M.
Esposito
,
K.
Watanabe
,
T.
Taniguchi
,
N.
Roch
,
F.
Lefloch
et al, “
A gate-tunable graphene Josephson parametric amplifier
,”
Nat. Nanotechnol.
17
,
1153
1158
(
2022
).
19.
D.
Phan
,
P.
Falthansl-Scheinecker
,
U.
Mishra
,
W.
Strickland
,
D.
Langone
,
J.
Shabani
, and
A.
Higginbotham
, “
Gate-tunable superconductor-semiconductor parametric amplifier
,”
Phys. Rev. Appl.
19
,
064032
(
2023
).
20.
L. J.
Splitthoff
,
J. J.
Wesdorp
,
M.
Pita-Vidal
,
A.
Bargerbos
,
Y.
Liu
, and
C. K.
Andersen
, “
Gate-tunable kinetic inductance parametric amplifier
,”
Phys. Rev. Appl.
21
,
014052
(
2024
).
21.
J.
Shabani
,
M.
Kjaergaard
,
H. J.
Suominen
,
Y.
Kim
,
F.
Nichele
,
K.
Pakrouski
,
T.
Stankevic
,
R. M.
Lutchyn
,
P.
Krogstrup
,
R.
Feidenhans'l
,
S.
Kraemer
,
C.
Nayak
,
M.
Troyer
,
C. M.
Marcus
, and
C. J.
Palmstrøm
, “
Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks
,”
Phys. Rev. B
93
,
155402
(
2016
).
22.
W.
Mayer
,
J.
Yuan
,
K. S.
Wickramasinghe
,
T.
Nguyen
,
M. C.
Dartiailh
, and
J.
Shabani
, “
Superconducting proximity effect in epitaxial Al-InAs heterostructures
,”
Appl. Phys. Lett.
114
,
103104
(
2019
).
23.
V. E.
Manucharyan
,
E.
Boaknin
,
M.
Metcalfe
,
R.
Vijay
,
I.
Siddiqi
, and
M.
Devoret
, “
Microwave bifurcation of a Josephson junction: Embedding-circuit requirements
,”
Phys. Rev. B
76
,
014524
(
2007
).
24.
C.
Ciaccia
,
R.
Haller
,
A. C. C.
Drachmann
,
T.
Lindemann
,
M. J.
Manfra
,
C.
Schrade
, and
C.
Schönenberger
, “
Gate-tunable Josephson diode in proximitized InAs supercurrent interferometers
,”
Phys. Rev. Res.
5
,
033131
(
2023
).
25.
M. C.
Koops
,
G. V.
van Duyneveldt
, and
R.
de Bruyn Ouboter
, “
Direct observation of the current-phase relation of an adjustable superconducting point contact
,”
Phys. Rev. Lett.
77
,
2542
2545
(
1996
).
26.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer's guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
27.
S. E.
Nigg
,
H.
Paik
,
B.
Vlastakis
,
G.
Kirchmair
,
S.
Shankar
,
L.
Frunzio
,
M. H.
Devoret
,
R. J.
Schoelkopf
, and
S. M.
Girvin
, “
Black-box superconducting circuit quantization
,”
Phys. Rev. Lett.
108
,
240502
(
2012
).
28.
N.
Bergeal
,
F.
Schackert
,
M.
Metcalfe
,
R.
Vijay
,
V.
Manucharyan
,
L.
Frunzio
,
D.
Prober
,
R.
Schoelkopf
,
S.
Girvin
, and
M.
Devoret
, “
Phase-preserving amplification near the quantum limit with a Josephson ring modulator
,”
Nature
465
,
64
68
(
2010
).
29.
A.
Kamal
,
A.
Marblestone
, and
M.
Devoret
, “
Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier
,”
Phys. Rev. B
79
,
184301
(
2009
).
30.
C.
Hutter
,
D.
Platz
,
E. A.
Tholén
,
T. H.
Hansson
, and
D. B.
Haviland
, “
Reconstructing nonlinearities with intermodulation spectroscopy
,”
Phys. Rev. Lett.
104
,
050801
(
2010
).
31.
Z.
Hao
(
2024
). “Kerr nonlinearity and parametric amplification with an Al-InAs superconductor–semiconductor Josephson junction,”
Zenodo
.
You do not currently have access to this content.