Two-dimensional van der Waals ferroelectric materials play an important role in a wide spectrum of semiconductor technologies and device applications. Integration of ferroelectrics into 2D-layered material-based devices is expected to offer intriguing working principles and add desired functionalities for next-generation electronics. Here, we investigate the electric and thermoelectric properties of thin layers of the 2H and 3R polymorphs of α-In2Se3 embedded in solid-state three-terminal devices. Charge transport measurements reveal a hysteretic behavior that can be ascribed to the effect of ferroelectric polarization at the metal electrode/2D semiconductor interfaces. The thermoelectric investigation of the same devices unveils a well-defined negative signal of the order of 100–200  μV/K in absolute value for the 2H polymorph, showing a slight modulation as a function of the gate voltage. An analogous but noisy thermoelectric voltage is measured for devices based on the 3R polymorph, where indeed a constant finite transversal offset in the 100  μV-few mV range is detected, which does not depend on the applied temperature gradient. We argue that these experimental observations are related to a strong residual in-plane ferroelectric polarization in the 3R α-In2Se3 polymorph thin layer. Our results show that the thermoelectric response is a fine probe of the ferroelectric character of 2D layered α-In2Se3.

1.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
2.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
3.
K. F.
Mak
and
J.
Shan
,
Nat. Photonics
10
,
216
(
2016
).
4.
5.
E.
Elahi
,
G.
Dastgeer
,
G.
Nazir
,
S.
Nisar
,
M.
Bashir
,
H.
Akhter Qureshi
,
D.
Kee Kim
,
J.
Aziz
,
M.
Aslam
,
K.
Hussain
,
M. A.
Assiri
, and
M.
Imran
,
Comput. Mater. Sci.
213
,
111670
(
2022
).
6.
Y.
Wang
,
N.
Xu
,
D.
Li
, and
J.
Zhu
,
Adv. Funct. Mater.
27
,
1604134
(
2017a
).
7.
M.
Yoshida
,
T.
Iizuka
,
Y.
Saito
,
M.
Onga
,
R.
Suzuki
,
Y.
Zhang
,
Y.
Iwasa
, and
S.
Shimizu
,
Nano Lett.
16
,
2061
(
2016
).
8.
J.
Pu
,
K.
Kanahashi
,
N. T.
Cuong
,
C.-H.
Chen
,
L.-J.
Li
,
S.
Okada
,
H.
Ohta
, and
T.
Takenobu
,
Phys. Rev. B
94
,
014312
(
2016
).
9.
A.
Chanthbouala
,
A.
Crassous
,
V.
Garcia
,
S.
Bouzehouane
,
K.
Fusil
,
X.
Moya
,
B.
Allibe
,
J.
Dlubak
,
S.
Grollier
,
J.
Xavier
,
A.
Deranlot
,
C.
Moshar
,
R.
Proksch
,
N. D.
Mathur
,
M.
Bibes
, and
A.
Barthélémy
,
Nat. Nanotechnol.
7
,
101
(
2012
).
10.
A.
Chanthbouala
,
V.
Garcia
,
R. O.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N. D.
Mathur
,
M.
Bibes
,
A.
Barthélémy
, and
J.
Grollier
,
Nat. Mater.
11
,
860
(
2012
).
11.
A.
Ram
,
K.
Maity
,
C.
Marchand
,
A.
Mahmoudi
,
A. R.
Kshirsagar
,
M.
Soliman
,
T.
Taniguchi
,
K.
Watanabe
,
B.
Doudin
,
A.
Ouerghi
,
S.
Reichardt
,
I.
O'Connor
, and
J.-F.
Dayen
,
ACS Nano
17
,
21865
(
2023
).
12.
F.
Xue
,
X.
He
,
J. R. D.
Retamal
,
A.
Han
,
J.
Zhang
,
Z.
Liu
,
J.-K.
Huang
,
W.
Hu
,
V.
Tung
,
J.-H.
He
,
L.-J.
Li
, and
X.
Zhang
,
Adv. Mater.
31
,
1901300
(
2019
).
13.
A. K.
Saha
,
M.
Si
,
P. D.
Ye
, and
S. K.
Gupta
,
Appl. Phys. Lett.
117
,
183504
(
2020
).
14.
L. W.
Martin
and
A. M.
Rappe
,
Nat. Rev. Mater.
2
,
16087
(
2016
).
15.
M.
Si
,
Y.
Luo
,
W.
Chung
,
H.
Bae
,
D.
Zheng
,
J.
Li
,
J.
Qin
,
G.
Qiu
,
S.
Yu
, and
P. D.
Ye
, “
A novel scalable energy-efficient synaptic device: Crossbar ferroelectric semiconductor junction
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
6.6.1
6.6.4
.
16.
W.
Chung
,
M.
Si
, and
P. D.
Ye
, “
First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2018
) p.
344
.
17.
M.
Soliman
,
K.
Maity
,
A.
Gloppe
,
A.
Mahmoudi
,
A.
Ouerghi
,
B.
Doudin
,
B.
Kundys
, and
J.-F.
Dayen
,
ACS Appl. Mater. Interfaces
15
,
15732
(
2023
).
18.
H.
Jiao
,
X.
Wang
,
S.
Wu
,
Y.
Chen
,
J.
Chu
, and
J.
Wang
,
Appl. Phys. Rev.
10
,
011310
(
2023
).
19.
G.
Kremer
,
A.
Mahmoudi
,
A.
M'Foukh
,
M.
Bouaziz
,
M.
Rahimi
,
M. L.
Della Rocca
,
P.
Le Fèvre
,
J.-F.
Dayen
,
F.
Bertran
,
S.
Matzen
,
M.
Pala
,
J.
Chaste
,
F.
Oehler
, and
A.
Ouerghi
,
ACS Nano
17
,
18924
(
2023
).
20.
F.
Xue
,
J.
Zhang
,
W.
Hu
,
W.-T.
Hsu
,
A.
Han
,
S.-F.
Leung
,
J.-K.
Huang
,
Y.
Wan
,
S.
Liu
,
J.
Zhang
,
J.-H.
He
,
W.-H.
Chang
,
Z. L.
Wang
,
X.
Zhang
, and
L.-J.
Li
,
ACS Nano
12
,
4976
(
2018a
).
21.
M.
Si
,
Z.
Zhang
,
S.-C.
Chang
,
N.
Haratipour
,
D.
Zheng
,
J.
Li
,
U. E.
Avci
, and
P. D.
Ye
,
ACS Nano
15
,
5689
(
2021
).
22.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
,
Y.
Cho
,
Q.
He
,
X.
Yang
,
K.
Herrera
,
Z.
Chu
,
Y.
Han
,
M. C.
Downer
,
H.
Peng
, and
K.
Lai
,
Nano Lett.
17
,
5508
(
2017
).
23.
C.
Cui
,
W.-J.
Hu
,
X.
Yan
,
C.
Addiego
,
W.
Gao
,
Y.
Wang
,
Z.
Wang
,
L.
Li
,
Y.
Cheng
,
P.
Li
,
X.
Zhang
,
H. N.
Alshareef
,
T.
Wu
,
W.
Zhu
,
X.
Pan
, and
L.-J.
Li
,
Nano Lett.
18
,
1253
(
2018
).
24.
C.
Zheng
,
L.
Yu
,
L.
Zhu
,
J. L.
Collins
,
D.
Kim
,
Y.
Lou
,
C.
Xu
,
M.
Li
,
Z.
Wei
,
Y.
Zhang
,
M. T.
Edmonds
,
S.
Li
,
J.
Seidel
,
Y.
Zhu
,
J. Z.
Liu
,
W.-X.
Tang
, and
M. S.
Fuhrer
,
Sci. Adv.
4
,
eaar7720
(
2018
).
25.
F.
Xue
,
W.
Hu
,
K.-C.
Lee
,
L.-S.
Lu
,
J.
Zhang
,
H.-L.
Tang
,
A.
Han
,
W.-T.
Hsu
,
S.
Tu
,
W.-H.
Chang
,
C.-H.
Lien
,
J.-H.
He
,
Z.
Zhang
,
L.-J.
Li
, and
X.
Zhang
,
Adv. Funct. Mater.
28
,
1803738
(
2018b
).
26.
J.
Xiao
,
H.
Zhu
,
Y.
Wang
,
W.
Feng
,
Y.
Hu
,
A.
Dasgupta
,
Y.
Han
,
Y.
Wang
,
D. A.
Muller
,
L. W.
Martin
,
P.
Hu
, and
X.
Zhang
,
Phys. Rev. Lett.
120
,
227601
(
2018
).
27.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
,
Nat. Commun.
8
,
14956
(
2017
).
28.
S.
Wan
,
Y.
Li
,
W.
Li
,
X.
Mao
,
W.
Zhu
, and
H.
Zeng
,
Nanoscale
10
,
14885
(
2018
).
29.
M.
Si
,
A. K.
Saha
,
S.
Gao
,
G.
Qiu
,
J.
Qin
,
Y.
Duan
,
J.
Jian
,
C.
Niu
,
H.
Wang
,
W.
Wu
,
S. K.
Gupta
, and
P. D.
Ye
,
Nat. Electron.
2
,
580
(
2019
).
30.
D.
Huo
,
Y.
Bai
,
X.
Lin
,
J.
Deng
,
Z.
Pan
,
C.
Zhu
,
C.
Liu
,
H.
Yu
, and
C.
Zhang
,
Nano Lett.
22
,
7261
(
2022
).
31.
Y.
Du
,
X.
Wang
,
X.
Dai
, and
W.
Li
,
Front. Phys.
10
,
861465
(
2022
).
32.
M.
He
,
X.
Li
,
X.
Liu
,
L.
Li
,
S.
Wei
, and
C.
Xia
,
Physica E
142
,
115256
(
2022
).
33.
Y.
Zhao
,
F.
Guo
,
R.
Ding
,
W. F.
Io
,
S.-Y.
Pang
,
W.
Wu
, and
J.
Hao
,
Adv. Opt. Mater.
9
,
2100864
(
2021
).
34.
L.
Debbichi
,
O.
Eriksson
, and
S.
Lebègue
,
J. Phys. Chem. Lett.
6
,
3098
(
2015
).
35.
T.
Nian
,
Z.
Wang
, and
B.
Dong
,
Appl. Phys. Lett.
118
,
033103
(
2021
).
36.
R.
Fei
,
W.
Kang
, and
L.
Yang
,
Phys. Rev. Lett.
117
,
097601
(
2016
).
37.
L.-D.
Zhao
,
S.-H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
,
373
(
2014
).
38.
C.
Jeengar
,
M.
Tomar
,
K.
Jindal
,
A.
Sharma
, and
P. K.
Jha
,
Mater. Sci. Semicond. Process.
153
,
107127
(
2023
).
39.
Q.
Wang
,
L.
Yang
,
S.
Zhou
,
X.
Ye
,
Z.
Wang
,
W.
Zhu
,
M. D.
McCluskey
, and
Y.
Gu
,
J. Phys. Chem. Lett.
8
,
2887
(
2017
).
40.
M.
Rahimi
,
K.
Sobnath
,
F.
Mallet
,
P.
Lafarge
,
C.
Barraud
,
W.
Daney de Marcillac
,
D.
Fournier
, and
M. L.
Della Rocca
,
Phys. Rev. Appl.
19
,
034075
(
2023
).
41.
S.
Timpa
,
M.
Rahimi
,
J.
Rastikian
,
S.
Suffit
,
F.
Mallet
,
P.
Lafarge
,
C.
Barraud
, and
M. L.
Della Rocca
,
J. Appl. Phys.
130
,
185102
(
2021
).
42.
M.
Kayyalha
,
J.
Maassen
,
M.
Lundstrom
,
L.
Shi
, and
Y. P.
Chen
,
J. Appl. Phys.
120
,
134305
(
2016
).
43.
M.
Küpers
,
P. M.
Konze
,
A.
Meledin
,
J.
Mayer
,
U.
Englert
,
M.
Wuttig
, and
R.
Dronskowski
,
Inorg. Chem.
57
,
11775
(
2018
).
44.
J.
Li
,
H.
Li
,
X.
Niu
, and
Z.
Wang
,
ACS Nano
15
,
18683
(
2021
).
45.
X.
Tao
and
Y.
Gu
,
Nano Lett.
13
,
3501
(
2013
).
46.
F.
Lyu
,
Y.
Sun
,
Q.
Yang
,
B.
Tang
,
M.
Li
,
Z.
Li
,
M.
Sun
,
P.
Gao
,
L.-H.
Ye
, and
Q.
Chen
,
Nanotechnology
31
,
315711
(
2020
).
47.
H.
Lee
,
Y. K.
Kim
,
D.
Kim
, and
D.-H.
Kang
,
IEEE Trans. Magn.
41
,
1034
1036
(
2005
).
48.
B.
Yu
,
S.
Ju
,
X.
Sun
,
G.
Ng
,
T. D.
Nguyen
,
M.
Meyyappan
, and
D. B.
Janes
,
Appl. Phys. Lett.
91
,
133119
(
2007
).
49.
J.
Cui
,
L.
Wang
,
Z.
Du
,
P.
Ying
, and
Y.
Deng
,
J. Mater. Chem. C
3
,
9069
(
2015
).
50.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
51.
J. L.
Collins
,
C.
Wang
,
A.
Tadich
,
Y.
Yin
,
C.
Zheng
,
J.
Hellerstedt
,
A.
Grubišić-Čabo
,
S.
Tang
,
S.-K.
Mo
,
J.
Riley
,
E.
Huwald
,
N. V.
Medhekar
,
M. S.
Fuhrer
, and
M. T.
Edmonds
,
ACS Appl. Electron. Mater.
2
,
213
(
2020
).
You do not currently have access to this content.