A planar Josephson junction is a versatile platform to realize topological superconductivity over a large parameter space and host Majorana bound states. With a change in the Zeeman field, this system undergoes a transition from trivial to topological superconductivity accompanied by a jump in the superconducting phase difference between the two superconductors. A standard model of these Josephson junctions, which can be fabricated to have a nearly perfect interfacial transparency, predicts a simple universal behavior. In that model, at the same value of Zeeman field for the topological transition, there is a π phase jump and a minimum in the critical superconducting current, while applying a controllable phase difference yields a diamond-shaped topological region as a function of that phase difference and a Zeeman field. In contrast, even for a perfect interfacial transparency, we find a much richer and nonuniversal behavior as the width of the superconductor is varied or the Dresselhaus spin–orbit coupling is considered. The Zeeman field for the phase jump, not necessarily π, is different from the value for the minimum critical current, while there is a strong deviation from the diamond-like topological region. These Josephson junctions show a striking example of a nonreciprocal transport and superconducting diode effect, revealing the importance of our findings not only for topological superconductivity and fault-tolerant quantum computing but also for superconducting spintronics.

1.
I.
Žutić
,
A.
Matos-Abiague
,
B.
Scharf
,
H.
Dery
, and
K.
Belashchenko
, “
Proximitized materials
,”
Mater. Today
22
,
85
(
2019
).
2.
M.
Amundsen
,
J.
Linder
,
J. W. A.
Robinson
,
I.
Žutić
, and
N.
Banerjee
, “
Colloquium: Spin-orbit effects in superconducting hybrid structures
,”
Rev. Mod. Phys.
96
,
021003
(
2024
).
3.
Fundamentals and Frontiers of the Josephson Effect
, edited by
F.
Tafuri
(
Springer Nature
,
Cham
,
2019
).
4.
B. D.
Josephson
, “
Possible new effects in superconductive tunnelling
,”
Phys. Lett.
1
,
251
(
1962
).
5.
R.
Holm
and
W.
Meissner
, “
Messungen mit hilfe von flüssigem helium, XIII
,”
Z. Phys.
74
,
75
(
1932
).
6.
L.
Fu
and
C. L.
Kane
, “
Superconducting proximity effect and Majorana fermions at the surface of a topological insulator
,”
Phys. Rev. Lett.
100
,
096407
(
2008
).
7.
A.
Keselman
,
L.
Fu
,
A.
Stern
, and
E.
Berg
, “
Inducing time-reversal-invariant topological superconductivity and fermion parity pumping in quantum wires
,”
Phys. Rev. Lett.
111
,
116402
(
2013
).
8.
B.
van Heck
,
S.
Mi
, and
A. R.
Akhmerov
, “
Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions
,”
Phys. Rev. B
90
,
155450
(
2014
).
9.
P.
Kotetes
, “
Topological superconductivity in Rashba semiconductors without a Zeeman field
,”
Phys. Rev. B
92
,
014514
(
2015
);
P.
Kotetes
Erratum: Topological superconductivity in Rashba semiconductors without a Zeeman field
,”
Phys. Rev. B
101
,
209904
(
2020
).
10.
M.
Hell
,
M.
Leijnse
, and
K.
Flensberg
, “
Two-dimensional platform for networks of Majorana bound states
,”
Phys. Rev. Lett.
118
,
107701
(
2017
).
11.
F.
Pientka
,
A.
Keselman
,
E.
Berg
,
A.
Yacoby
,
A.
Stern
, and
B. I.
Halperin
, “
Topological superconductivity in a planar Josephson junction
,”
Phys. Rev. X
7
,
021032
(
2017
).
12.
T.
Zhou
,
M. C.
Dartiailh
,
W.
Mayer
,
J. E.
Han
,
A.
Matos-Abiague
,
J.
Shabani
, and
I.
Žutić
, “
Phase control of Majorana bound states in a topological X junction
,”
Phys. Rev. Lett.
124
,
137001
(
2020
).
13.
A. Y.
Kitaev
, “
Unpaired Majorana fermions in quantum wires
,”
Phys.-Usp.
44
,
131
(
2001
).
14.
A.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
).
15.
R. M.
Lutchyn
,
J. D.
Sau
, and
S.
Das Sarma
, “
Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures
,”
Phys. Rev. Lett.
105
,
077001
(
2010
).
16.
Y.
Oreg
,
G.
Refael
, and
F.
von Oppen
, “
Helical liquids and Majorana bound states in quantum wires
,”
Phys. Rev. Lett.
105
,
177002
(
2010
).
17.
L. P.
Rokhinson
,
X.
Liu
, and
J. K.
Furdyna
, “
The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles
,”
Nat. Phys.
8
,
795
(
2012
).
18.
M.
Leijnse
and
K.
Flensberg
, “
Introduction to topological superconductivity and Majorana fermions
,”
Semicond. Sci. Technol.
27
,
124003
(
2012
).
19.
D.
Aasen
,
M.
Hell
,
R. V.
Mishmash
,
A.
Higginbotham
,
J.
Danon
,
M.
Leijnse
,
T. S.
Jespersen
,
J. A.
Folk
,
C. M.
Marcus
,
K.
Flensberg
, and
J.
Alicea
, “
Milestones toward Majorana-based quantum computing
,”
Phys. Rev. X
6
,
031016
(
2016
).
20.
K.
Laubscher
and
J.
Klinovaja
, “
Majorana bound states in semiconducting nanostructures
,”
J. Appl. Phys.
130
,
081101
(
2021
).
21.
P.
Marra
, “
Majorana nanowires for topological quantum computation
,”
J. Appl. Phys.
132
,
231101
(
2022
).
22.
K.
Sengupta
,
I.
Žutić
,
H.-J.
Kwon
,
V. M.
Yakovenko
, and
S.
Das Sarma
, “
Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors
,”
Phys. Rev. B
63
,
144531
(
2001
).
23.
V.
Mourik
,
K.
Zuo
,
S. M.
Frolov
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
, “
Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices
,”
Science
336
,
1003
(
2012
).
24.
E. J. H.
Lee
,
X.
Jiang
,
R.
Aguado
,
G.
Katsaros
,
C. M.
Lieber
, and
S.
De Franceschi
, “
Zero-bias anomaly in a nanowire quantum dot coupled to superconductors
,”
Phys. Rev. Lett.
109
,
186802
(
2012
).
25.
A.
Das
,
Y.
Ronen
,
Y.
Most
,
Y.
Oreg
,
M.
Heiblum
, and
H.
Shtrikman
, “
Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions
,”
Nat. Phys.
8
,
887
(
2012
).
26.
J.
Chen
,
B. D.
Woods
,
P.
Yu
,
M.
Hocevar
,
D.
Car
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
,
T. D.
Stanescu
, and
S. M.
Frolov
, “
Ubiquitous non-Majorana zero-bias conductance peaks in nanowire devices
,”
Phys. Rev. Lett.
123
,
107703
(
2019
).
27.
S.
Das Sarma
and
H.
Pan
, “
Disorder-induced zero-bias peaks in Majorana nanowires
,”
Phys. Rev. B
103
,
195158
(
2021
).
28.
P.
Yu
,
J.
Chen
,
M.
Gomanko
,
G.
Badawy
,
E. P. A. M.
Bakkers
,
K.
Zuo
,
V.
Mourik
, and
S. M.
Frolov
, “
Non-Majorana states yield nearly quantized conductance in proximatized nanowires
,”
Nat. Phys.
17
,
482
(
2021
).
29.
J.
Shabani
,
M.
Kjaergaard
,
H. J.
Suominen
,
Y.
Kim
,
F.
Nichele
,
K.
Pakrouski
,
T.
Stankevic
,
R. M.
Lutchyn
,
P.
Krogstrup
,
R.
Feidenhans'l
,
S.
Kraemer
,
C.
Nayak
,
M.
Troyer
,
C. M.
Marcus
, and
C. J.
Palmstrøm
, “
Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks
,”
Phys. Rev. B
93
,
155402
(
2016
).
30.
B.
Scharf
,
F.
Pientka
,
H.
Ren
,
A.
Yacoby
, and
E.
Hankiewicz
, “
Tuning topological superconductivity in phase-controlled Josephson junctions with Rashba and Dresselhaus spin-orbit coupling
,”
Phys. Rev. B
99
,
214503
(
2019
).
31.
P.
Virtanen
,
F. S.
Bergeret
,
E.
Strambini
,
F.
Giazotto
, and
A.
Braggio
, “
Majorana bound states in hybrid two-dimensional Josephson junctions with ferromagnetic insulators
,”
Phys. Rev. B
98
,
020501(R)
(
2018
).
32.
T.
Zhou
,
M. C.
Dartiailh
,
K.
Sardashti
,
J. E.
Han
,
A.
Matos-Abiague
,
J.
Shabani
, and
I.
Žutić
, “
Fusion of Majorana bound states with mini-gate control in two-dimensional systems
,”
Nat. Commun.
13
,
1738
(
2022
).
33.
F.
Setiawan
,
C.-T.
Wu
, and
K.
Levin
, “
Full proximity treatment of topological superconductors in Josephson-junction architectures
,”
Phys. Rev. B
99
,
174511
(
2019
).
34.
G. L.
Fatin
,
A.
Matos-Abiague
,
B.
Scharf
, and
I.
Žutić
, “
Wireless Majorana bound states: From magnetic tunability to braiding
,”
Phys. Rev. Lett.
117
,
077002
(
2016
).
35.
A.
Matos-Abiague
,
J.
Shabani
,
A. D.
Kent
,
G. L.
Fatin
,
B.
Scharf
, and
I.
Žutić
, “
Tunable magnetic textures: From Majorana bound states to braiding
,”
Solid State Commun.
262
,
1
6
(
2017
).
36.
P. P.
Paudel
,
T.
Cole
,
B. D.
Woods
, and
T. D.
Stanescu
, “
Enhanced topological superconductivity in spatially modulated planar Josephson junctions
,”
Phys. Rev. B
104
,
155428
(
2021
).
37.
N.
Pankratova
,
H.
Lee
,
R.
Kuzmin
,
K.
Wickramasinghe
,
W.
Mayer
,
J.
Yuan
,
M. G.
Vavilov
,
J.
Shabani
, and
V. E.
Manucharyan
, “
Multiterminal Josephson effect
,”
Phys. Rev. X
10
,
031051
(
2020
).
38.
U.
Güngördü
and
A. A.
Kovalev
, “
Majorana bound states with chiral magnetic textures
,”
J. Appl. Phys.
132
,
041101
(
2022
).
39.
A.
Fornieri
,
A. M.
Whiticar
,
F.
Setiawan
,
E.
Portolés
,
A. C. C.
Drachmann
,
A.
Keselman
,
S.
Gronin
,
C.
Thomas
,
T.
Wang
,
R.
Kallaher
,
G. C.
Gardner
,
E.
Berg
,
M. J.
Manfra
,
A.
Stern
,
C. M.
Marcus
, and
F.
Nichele
, “
Evidence of topological superconductivity in planar Josephson junctions
,”
Nature
569
,
89
(
2019
).
40.
H.
Ren
,
F.
Pientka
,
S.
Hart
,
A.
Pierce
,
M.
Kosowsky
,
L.
Lunczer
,
R.
Schlereth
,
B.
Scharf
,
E. M.
Hankiewicz
,
L. W.
Molenkamp
,
B. I.
Halperin
, and
A.
Yacoby
, “
Topological superconductivity in a phase-controlled Josephson junction
,”
Nature
569
,
93
(
2019
).
41.
M. C.
Dartiailh
,
W.
Mayer
,
J.
Yuan
,
K. S.
Wickramasinghe
,
A.
Matos-Abiague
,
I.
Žutić
, and
J.
Shabani
, “
Phase signature of topological transition in Josephson junctions
,”
Phys. Rev. Lett.
126
,
036802
(
2021
).
42.
A.
Banerjee
,
O.
Lesser
,
M. A.
Rahman
,
H.-R.
Wang
,
M.-R.
Li
,
A.
Kringhøj
,
A. M.
Whiticar
,
A. C. C.
Drachmann
,
C.
Thomas
,
T.
Wang
,
M. J.
Manfra
,
E.
Berg
,
Y.
Oreg
,
A.
Stern
, and
C. M.
Marcus
, “
Signatures of a topological phase transition in a planar Josephson junction
,”
Phys. Rev. B
107
,
245304
(
2023
).
43.
A.
Banerjee
,
M.
Geier
,
M. A.
Rahman
,
D. S.
Sanchez
,
C.
Thomas
,
T.
Wang
,
M. J.
Manfra
,
K.
Flensberg
, and
C. M.
Marcus
, “
Control of Andreev bound states using superconducting phase texture
,”
Phys. Rev. Lett.
130
,
116203
(
2023
).
44.
R.
Li
,
W.
Song
,
W.
Miao
,
Z.
Yu
,
Z.
Wang
,
S.
Yang
,
Y.
Gao
,
Y.
Wang
,
F.
Chen
,
Z.
Geng
,
L.
Yang
,
J.
Xu
,
X.
Feng
,
T.
Wang
,
Y.
Zang
,
L.
Li
,
R.
Shang
,
Q.
Xue
,
K.
He
, and
H.
Zhang
, “
Selective-area-grown PbTe-Pb planar Josephson junctions for quantum devices
,”
Nano Lett.
24
,
4658
(
2024
).
45.
C.
Baumgartner
,
L.
Fuchs
,
A.
Costa
,
S.
Reinhardt
,
S.
Gronin
,
G. C.
Gardner
,
T.
Lindemann
,
M. J.
Manfra
,
P. E. F.
Junior
,
D.
Kochan
,
J.
Fabian
,
N.
Paradiso
, and
C.
Strunk
, “
Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions
,”
Nat. Nanotechnol.
17
,
39
(
2022
).
46.
M.
Nadeem
,
M. S.
Fuhrer
, and
X.
Wang
, “
The superconducting diode effect
,”
Nat. Rev. Phys.
5
,
558
(
2023
).
47.
N.
Lotfizadeh
,
W.
Schiela
,
B.
Pekerten
,
P.
Yu
,
W.
Strickland
,
A.
Matos-Abiague
, and
J.
Shabani
, “
Superconducting diode effect sign change in epitaxial Al-InAs Josepshon junctions
,”
Commun. Phys.
7
,
120
(
2024
).
48.
I.
Žutić
,
J.
Fabian
, and
S.
Das Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
,
323
(
2004
).
49.
J.
Fabian
,
A.
Matos-Abiague
,
C.
Ertler
,
P.
Stano
, and
I.
Žutić
, “
Semiconductor spintronics
,”
Acta Phys. Slovaca
57
,
565
(
2007
), available at http://www.physics.sk/aps/pubs/2007/aps-07-04/aps-07-04.pdf.
50.
J.
Pakizer
,
B.
Scharf
, and
A.
Matos-Abiague
, “
Crystalline anisotropic topological superconductivity in planar Josephson junctions
,”
Phys. Rev. Res.
3
,
013198
(
2021
).
51.
J.
Pakizer
and
A.
Matos-Abiague
, “
Signatures of topological transitions in the spin susceptibility of Josephson junctions
,”
Phys. Rev. B
104
,
L100506
(
2021
).
52.
B.
Pekerten
,
J. D.
Pakizer
,
B.
Hawn
, and
A.
Matos-Abiague
, “
Anisotropic topological superconductivity in Josephson junctions
,”
Phys. Rev. B
105
,
054504
(
2022
).
53.
M.
Tinkham
,
Introduction to Superconductivity
(
McGraw-Hill
,
New York
,
1996
).
54.
C. W.
Groth
,
A. R.
Akhmerov
, and
X.
Waintal
, “
Kwant: A software package for quantum transport
,”
New J. Phys.
16
,
063065
(
2014
).
55.
A.
Altland
and
M.
Zirnbauer
, “
Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
,”
Phys. Rev. B
55
,
1142
(
1997
).
56.
A.
Schnyder
,
S.
Ryu
,
A.
Furusaki
,
A.
Ludwig
,
V.
Lebedev
, and
M.
Feigel'man
, “
Classification of topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
10
(
2009
).
57.
S.
Ryu
,
A.
Schnyder
,
A.
Furusaki
, and
A.
Ludwig
, “
Topological insulators and superconductors: Tenfold way and dimensional hierarchy
,”
New J. Phys.
12
,
065010
(
2010
).
58.
P.
Ghosh
,
J.
Sau
,
S.
Tewari
, and
S.
Das Sarma
, “
Non-abelian topological order in noncentrosymmetric superconductors with broken time-reversal symmetry
,”
Phys. Rev. B
82
,
184525
(
2010
).
59.
S.
Tewari
and
J. D.
Sau
, “
Topological invariants for spin-orbit coupled superconductor nanowires
,”
Phys. Rev. Lett.
109
,
150408
(
2012
).
60.
M.
Kjaergaard
,
H.
Suominen
,
M.
Nowak
,
A.
Akhmerov
,
J.
Shabani
,
C. J.
Palmstrøm
,
F.
Nichele
, and
C.
Marcus
, “
Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction
,”
Phys. Rev. Appl.
7
,
034029
(
2017
).
61.
F.
Nichele
,
E.
Portolés
,
A.
Fornieri
,
A. M.
Whiticar
,
A. C. C.
Drachmann
,
S.
Gronin
,
T.
Wang
,
G. C.
Gardner
,
C.
Thomas
,
A.
Hatke
,
M. J.
Manfra
, and
C. M.
Marcus
, “
Relating Andreev bound states and supercurrents in hybrid Josephson junctions
,”
Phys. Rev. Lett.
124
,
226801
(
2020
).
62.
F.
Setiawan
,
A.
Stern
, and
E.
Berg
, “
Topological superconductivity in planar Josephson junctions: Narrowing down to the nanowire limit
,”
Phys. Rev. B
99
,
220506
(
2019
).
63.
B.
Pekerten
,
A. C.
Prasannan
,
B.
Scharf
, and
A.
Matos-Abiague
, “
Topological superconductivity and Josephson diode effects on the magnetocurrent-phase relation of planar Josephson junctions
,” (unpublished) (
2024
).
64.
T.
Yokoyama
,
M.
Eto
, and
Y. V.
Nazarov
, “
Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires
,”
Phys. Rev. B
89
,
195407
(
2014
).
65.
Y.
Hou
,
F.
Nichele
,
H.
Chi
,
A.
Lodesani
,
Y.
Wu
,
M. F.
Ritter
,
D. Z.
Haxell
,
M.
Davydova
,
S.
Ilić
,
O.
Glezakou-Elbert
,
A.
Varambally
,
F. S.
Bergeret
,
A.
Kamra
,
L.
Fu
,
P. A.
Lee
, and
J. S.
Moodera
, “
Ubiquitous superconducting diode effect in superconductor thin films
,”
Phys. Rev. Lett.
131
,
027001
(
2023
).
66.
J.
Linder
and
J. W. A.
Robinson
, “
Superconducting spintronics
,”
Nat. Phys.
11
,
307
(
2015
).
67.
M.
Eschrig
, “
Spin-polarized supercurrents for spintronics: A review of current progress
,”
Rep. Prog. Phys.
78
,
104501
(
2015
).
68.
R.
Cai
,
I.
Žutić
, and
W.
Han
, “
Superconductor/ferromagnet heterostructures: A platform for superconducting spintronics and quantum computation
,”
Adv. Quantum Technol.
6
,
2200080
(
2023
).
69.
N.
Banerjee
,
J. W. A.
Robinson
, and
M. G.
Blamire
, “
Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions
,”
Nat. Commun.
5
,
4771
(
2014
).
70.
A.
Stern
and
E.
Berg
, “
Fractional Josephson vortices and braiding of Majorana zero modes in planar superconductor-semiconductor heterostructures
,”
Phys. Rev. Lett.
122
,
107701
(
2019
).
71.
V. D.
Kurilovich
,
Z. M.
Raines
, and
L. I.
Glazman
, “
Disorder-enabled Andreev reflection of a quantum Hall edge
,”
Nat. Commun.
14
,
2237
(
2023
).
72.
P.
Kotetes
,
M. T.
Mercaldo
, and
M.
Cuoco
, “
Synthetic Weyl points and chiral anomaly in Majorana devices with nonstandard Andreev-bound-state spectra
,”
Phys. Rev. Lett.
123
,
126802
(
2019
).
73.
T. W.
Schmitt
,
M. R.
Connolly
,
M.
Schleenvoigt
,
C.
Liu
,
O.
Kennedy
,
J. M.
Chávez-Garcia
,
A. R.
Jalil
,
B.
Bennemann
,
S.
Trellenkamp
,
F.
Lentz
,
E.
Neumann
,
T.
Lindström
,
S. E.
de Graaf
,
E.
Berenschot
,
N.
Tas
,
G.
Mussler
,
K. D.
Petersson
,
D.
Grützmacher
, and
P.
Schüffelgen
, “
Integration of topological insulator Josephson junctions in superconducting qubit circuits
,”
Nano Lett.
22
,
2595
(
2022
).
74.
K. V.
Samokhin
, “
On the effective models of spin-orbit coupling in a two-dimensional electron gas
,”
Ann. Phys.
437
,
168710
(
2022
).
75.
M.
Alidoust
,
C.
Shen
, and
I.
Žutić
, “
Cubic spin-orbit coupling and anomalous Josephson effect in planar junctions
,”
Phys. Rev. B
103
,
L060503
(
2021
).
76.
M.
Luethi
,
K.
Laubscher
,
S.
Bosco
,
D.
Loss
, and
J.
Klinovaja
, “
Planar Josephson junctions in germanium: Effect of cubic spin-orbit interaction
,”
Phys. Rev. B
107
,
035435
(
2023
).
77.
A. A.
Tosato
,
V.
Levajac
,
J.-Y.
Wang
,
C. J.
Boor
,
F.
Borsoi
,
M. B. C. N.
Borja
,
S.
Marti-Sanchez
,
J.
Arbiol
,
A.
Sammak
,
M.
Veldhorst
, and
G.
Scappucci
, “
Hard superconducting gap in a high-mobility semiconductor
,”
Commun. Mater.
4
,
23
(
2023
).
78.
D.
Kochan
,
A.
Costa
,
I.
Zhumagulov
, and
I.
Žutić
, “
Phenomenological theory of the supercurrent diode effect: The Lifshitz invariant
,” arXiv:2303.11975.
You do not currently have access to this content.