In this study, we conducted calculations to determine the thermal conductivity of silicon nanowires with various shapes and cross-sectional designs using the Monte Carlo method combined with Green–Kubo heat flow autocorrelation. This computational approach is known for its reliability in predicting thermal properties of complex nanostructured devices. We specifically examined nanowires with circular or rectangular sections combined to complex serpentine and fishbone modulations. Our findings indicate that the nanowire's geometry significantly impacts the phonon mean free path and thermal transport. More specifically, patterns with serpentine modulations exhibit a pronounced reduction in thermal conductivity attributable to enhanced phonon boundary scatterings. Our simulation results are compared with the available experimental data, highlighting the potential of our method for structural optimization in thermal management applications, particularly in devices like thermoelectric converters.

1.
G.
Pernot
,
M.
Stoffel
,
I.
Savic
,
F.
Pezzoli
,
P.
Chen
,
G.
Savelli
,
A.
Jacquot
,
J.
Schumann
,
U.
Denker
,
I.
Mönch
,
C.
Deneke
,
O. G.
Schmidt
,
J. M.
Rampnoux
,
S.
Wang
,
M.
Plissonnier
,
A.
Rastelli
,
S.
Dilhaire
, and
N.
Mingo
, “
Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers
,”
Nat. Mater.
9
,
491
495
(
2010
).
2.
D.
Song
and
G.
Chen
, “
Thermal conductivity of periodic microporous silicon films
,”
Appl. Phys. Lett.
84
(
5
),
687
689
(
2004
).
3.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
, “
Thermal conductivity of individual silicon nanowires
,”
Appl. Phys. Lett.
83
(
14
),
2934
2936
(
2003
).
4.
J.
Lee
,
W.
Lee
,
J.
Lim
,
Y.
Yu
,
Q.
Kong
,
J.
Urban
, and
P.
Yang
, “
Thermal transport in silicon nanowires at high temperature up to 700 k
,”
Nano Lett.
16
,
4133
(
2016
).
5.
R.
Anufriev
,
S.
Gluchko
,
S.
Volz
, and
M.
Nomura
, “
Probing ballistic thermal conduction in segmented silicon nanowires
,”
Nanoscale
11
,
13407
13414
(
2019
).
6.
X.
Zianni
, “
Diameter-modulated nanowires as candidates for high thermoelectric energy conversion efficiency
,”
Appl. Phys. Lett.
97
(
23
),
233106
(
2010
).
7.
X.
Zianni
, “
Thermoelectric metamaterials: Nano-waveguides for thermoelectric energy conversion and heat management at the nanoscale
,”
Adv. Elect. Mater.
7
(
8
),
2100176
(
2021
).
8.
C.
Blanc
,
A.
Rajabpour
,
S.
Volz
,
T.
Fournier
, and
O.
Bourgeois
, “
Phonon heat conduction in corrugated silicon nanowires below the Casimir limit
,”
Appl. Phys. Lett.
103
(
4
),
043109
(
2013
).
9.
T.
Hori
, “
Role of geometry and surface roughness in reducing phonon mean free path and lattice thermal conductivity of modulated nanowires
,”
Int. J. Heat Mass Transfer
156
,
119818
(
2020
).
10.
Y.
Song
and
G.
Wehmeyer
, “
Maximizing and minimizing the boundary scattering mean free path in diameter-modulated coaxial cylindrical nanowires
,”
J. Appl. Phys.
130
(
4
),
045104
(
2021
).
11.
J.
Zou
and
A.
Balandin
, “
Phonon heat conduction in a semiconductor nanowire
,”
J. Appl. Phys.
89
(
5
),
2932
2938
(
2001
).
12.
J.
Maire
,
R.
Anufriev
,
T.
Hori
,
J.
Shiomi
,
S.
Volz
, and
M.
Nomura
, “
Thermal conductivity reduction in silicon fishbone nanowires
,”
Sci. Rep.
8
,
4452
4403
(
2018
).
13.
G.
Zhigang
,
Y.
Jian
,
T.
Zhoutuo
,
T.
Xing
,
Z.
Shang
, and
W.
Qiuwang
, “
A simplified finite volume method for effective thermal conductivity in discrete particles
,”
Powder Technol.
375
,
521
532
(
2020
).
14.
D.
Lacroix
,
M. I.
Nkenfack
,
G.
Pernot
, and
M.
Isaiev
, “
Thermal properties of nanoporous materials, large scale modelling with the use of Monte Carlo phonon transport autocorrelation
,”
J. Appl. Phys.
134
(
2
),
025101
(
2023
).
15.
K.
Kukita
and
Y.
Kamakura
, “
Monte Carlo simulation of phonon transport in silicon including a realistic dispersion relation
,”
J. Appl. Phys.
114
(
15
),
154312
154310
(
2013
).
16.
D.
Lacroix
,
M.
Isaiev
, and
G.
Pernot
, “
Thermal transport in semiconductors studied by Monte Carlo simulations combined with the Green-Kubo formalism
,”
Phys. Rev. B
104
,
165202
(
2021
).
17.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
, “
Monte Carlo transient phonon transport in silicon and germanium at nanoscales
,”
Phys. Rev. B
72
,
064305
(
2005
).
18.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
, “
Comparison of atomic-level simulation methods for computing thermal conductivity
,”
Phys. Rev. B
65
,
144306
(
2002
).
19.
R.
Anufriev
,
S.
Gluchko
,
S.
Volz
, and
M.
Nomura
, “
Quasi-ballistic heat conduction due to Lévy phonon flights in silicon nanowires
,”
ACS Nano
12
,
11928
(
2018
).
20.
Y. S.
Touloukian
,
R. W.
Powell
,
C. Y.
Ho
, and
P. G.
Klemens
, “
Thermophysical, and electronic properties information analysis center Lafayette
,” in
Thermophysical Properties of Matter—The TPRC Data Series.
Volume 1. Thermal Conductivity—Metallic Elements and Alloys (
Defense Technical Information Center
,
1970
).
21.
R.
Gereth
and
K.
Hubner
, “
Phonon mean free path in silicon between 77 and 250k
,”
Phys. Rev.
134
,
A235
A240
(
1964
).
22.
V.
Jean
,
S.
Fumeron
,
K.
Termentzidis
,
X.
Zianni
, and
D.
Lacroix
, “
Monte Carlo simulations of phonon transport in Si nanowires with constrictions
,”
Int. J. Heat Mass Transfer
86
,
648
655
(
2015
).
23.
A.
Malhotra
and
M.
Maldovan
, “
Impact of phonon surface scattering on thermal energy distribution of Si and SiGe nanowires
,”
Sci. Rep.
6
,
25818
25805
(
2016
).
24.
D.
Lacroix
,
K.
Joulain
,
D.
Terris
, and
D.
Lemonnier
, “
Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires
,”
Appl. Phys. Lett.
89
,
09
(
2006
).
25.
S.
Blanco
and
R.
Fournier
, “
An invariance property of diffusive random walks
,”
Europhys. Lett.
61
(2),
168
173
(
2003
).
26.
S.
Qiao
,
D.
Li
, and
L.
Yang
, “
Heat flow guiding and modulation by kinks in a silicon nanoribbon
,”
Nano Lett.
23
(
19
),
8860
8867
(
2023
).
27.
M.
Verdier
,
D.
Lacroix
, and
K.
Termentzidis
, “
Thermal transport in two- and three-dimensional nanowire networks
,”
Phys. Rev. B
98
,
155434
(
2018
).
28.
J.
Maire
and
M.
Nomura
, “
Reduced thermal conductivities of Si one-dimensional periodic structure and nanowire
,”
Jpn. J. Appl. Phys.
53
,
06JE09
(
2014
).
29.
G. S.
Doerk
,
C.
Carraro
, and
R.
Maboudian
, “
Single nanowire thermal conductivity measurements by Raman thermography
,”
ACS Nano.
4
(
8
),
4908
4914
(
2010
).
30.
J.-P.
Peraud
,
C.
Landon
, and
N.
Hadjiconstantinou
, “
Monte Carlo methods for solving the Boltzmann transport equation
,”
Ann. Rev. Heat Transfer
17
,
205
265
(
2014
).
You do not currently have access to this content.