We performed a comprehensive multi-scale phonon-mediated thermal transport study of nano-porous silicon (np-Si) films with average porosities in the range of φ = 30%–70%. This depth-resolved thermal characterization involves a combination of optical methods, including femtosecond laser-based time-domain thermo-reflectance (TDTR) with MHz modulation rates, opto-thermal micro-Raman spectroscopy, and continuum laser wave-based frequency domain thermo-reflectance (FDTR) with kHz modulation rates probing depths of studied samples over 0.5–1.2, 2–3.2, and 23–34 μm, respectively. We revealed a systematic decrease in thermal conductivity ( k) with the rise of φ, i.e., with the lowering of the Si crystalline phase volumetric fraction. These data were used to validate our semi-classical phonon Monte Carlo and finite element mesh simulations of heat conduction, taking into account disordered geometry configurations with various φ and pore size, as well as laser-induced temperature distributions, respectively. At high φ, the decrease in k is additionally influenced by the disordering of the crystal structure, as evidenced by the near-surface sensitive TDTR and Rutherford backscattering spectroscopy measurements. Importantly, the k values measured by FDTR over larger depths inside np-Si were found to be anisotropic and lower than those detected by the near-surface sensitive TDTR and Raman thermal probes. This finding is supported by the cross-sectional scanning electron microscopy image indicating enhanced φ distribution over these micrometer-scale probed depths. Our study opens an avenue for nano-to-micrometer scale thermal depth profiling of porous semiconducting media with inhomogeneous porosity distributions applicable for efficient thermoelectric and thermal management.

1.
A. M.
Massoud
,
P. O.
Chapuis
,
B.
Canut
, and
J. M.
Bluet
,
J. Appl. Phys.
128
,
175109
(
2020
).
2.
D.
Zhao
and
G.
Tan
,
Appl. Therm. Eng.
66
,
15
24
(
2014
).
3.
D. K.
Aswal
,
R.
Basu
, and
A.
Singh
,
Energy Convers. Manage.
114
,
50
67
(
2016
).
4.
P.
Newby
,
B.
Canut
,
J. M.
Bluet
,
S.
Gomès
,
M.
Isaiev
,
R.
Burbelo
,
K.
Termentzidis
,
P.
Chantrenne
,
L. G.
Fréchette
, and
V.
Lysenko
,
J. Appl. Phys.
114
,
014903
(
2013
).
5.
M.
Capelle
,
J.
Billoue
,
P.
Poveda
, and
G.
Gautier
,
Int. J. Microwave Wireless Technol.
6
,
39
43
(
2014
).
6.
G.
Kaltsas
and
A. G.
Nassiopoulou
,
Sens. Actuators
76
,
133
138
(
1999
).
7.
E.
Hourdakis
and
A. G.
Nassiopoulou
,
Sensors
13
,
13596
13608
(
2013
).
8.
J. H.
Lee
,
G. A.
Galli
, and
J. C.
Grossman
,
Nano Lett.
8
,
3750
3754
(
2008
).
9.
E.
Hourdakis
,
P.
Sarafis
, and
A. G.
Nassiopoulou
,
Sensors
12
,
14838
14850
(
2012
).
10.
D. N.
Pagonis
,
A.
Petropoulos
,
G.
Kaltsas
,
A. G.
Nassiopoulou
, and
A.
Tserepi
,
Phys. Status Solidi
204
,
1474
1479
(
2007
).
11.
N.
Koshida
,
D.
Hippo
,
M.
Mori
,
H.
Yanazawa
,
H.
Shinoda
, and
T.
Shimada
,
Appl. Phys. Lett.
102
,
123504
(
2013
).
12.
Z.
Wang
,
J.
Zhang
,
S.
Xu
,
L.
Wang
,
Z.
Cao
,
P.
Zhan
, and
Z.
Wang
,
J. Phys. D: Appl. Phys.
40
,
4482
4484
(
2007
).
13.
G.
Chen
,
Nanoscale Energy Transport and Conversion
(
Oxford University Press
,
New York
,
2005
).
14.
Z.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw Hill
,
New York
,
2007
).
15.
T. T. N.
Lan
,
U.
Seidel
,
H. G.
Walther
,
G.
Goch
, and
B.
Schmitz
,
J. Appl. Phys.
78
,
4108
(
1995
).
16.
A.
Sizov
,
D.
Cederkrantz
,
L.
Salmi
,
A.
Rosén
,
L.
Jacobson
,
S. E.
Gustafsson
, and
M.
Gustavsson
,
Rev. Sci. Instrum.
87
,
074901
(
2016
).
17.
A.
Abdullaev
,
A.
Koshkinbayeva
,
V.
Chauhan
,
Z.
Nurekeyev
,
J.
O'Connell
,
A. J.
Vuuren
,
V.
Skuratov
,
M.
Khafizov
, and
Z. N.
Utegulov
,
J. Nucl. Mater.
561
,
153563
(
2022
).
18.
A.
Abdullaev
,
V. S.
Chauhan
,
B.
Muminov
,
J.
O'Connell
,
V. A.
Skuratov
,
M.
Khafizov
, and
Z. N.
Utegulov
,
J. Appl. Phys.
127
,
035108
(
2020
).
19.
Q.
Shen
and
T.
Toyoda
,
Rev. Sci. Instrum.
74
,
601
(
2003
).
20.
P.
Lishchuk
,
D.
Andrusenko
,
M.
Isaiev
,
V.
Lysenko
, and
R.
Burbelo
,
Int. J. Thermophys.
36
,
2428
(
2015
).
21.
A.
Melhem
,
D. D. S.
Meneses
,
C.
Andreazza-Vignolles
,
T.
Defforge
,
G.
Gautier
,
N.
Semmar
, and
C.
Andreazza-Vignolle
,
J. Phys. Chem. C
119
,
21443
21451
(
2015
).
22.
K.
Valalaki
and
A. G.
Nassiopoulou
,
J. Phys. D: Appl. Phys.
50
,
195302
(
2017
).
23.
A.
Wolf
and
R.
Brendel
,
Thin Solid Films
513
,
385
390
(
2006
).
24.
U.
Bernini
,
S.
Lettieri
,
P. M.
Maddalena
,
R.
Vitiello
, and
G. D.
Francia
,
J. Phys.: Condens. Matter
13
,
1141
1150
(
2001
).
25.
J. D.
Boor
,
D. S.
Kim
,
X.
Ao
,
D.
Hagen
,
A.
Cojocaru
,
H.
Foll
, and
V.
Schmidt
,
EPL
96
,
16001
(
2011
).
26.
S.
Lettieri
,
U.
Bernini
,
E.
Massera
, and
P. M.
Maddalena
,
Phys. Status Solidi C
2
,
3414
3418
(
2005
).
27.
K.
Dubyk
,
A.
Pastushenko
,
T.
Nychyporuk
,
R.
Burbelo
,
M.
Isaiev
, and
V.
Lysenko
,
J. Phys. Chem. Solids
126
,
267
(
2019
).
28.
G.
Benedetto
,
L.
Boarino
, and
R.
Spagnolo
,
Appl. Phys. A
6
,
155
159
(
1997
).
29.
V.
Lysenko
,
S.
Périchon
,
B.
Remaki
,
D.
Barbier
, and
B.
Champagnon
,
J. Appl. Phys.
86
,
6841
6846
(
1999
).
30.
O.
Makukha
,
I.
Lysenko
, and
A.
Belarouci
,
Nanomaterials
13
,
310
(
2023
).
31.
B. A.
Kurbanova
,
G. K.
Mussabek
,
V. Y.
Timoshenko
,
V.
Lysenko
, and
Z. N.
Utegulov
,
Nanomaterials
11
,
2379
(
2021
).
32.
S.
Gomes
,
L.
David
,
V.
Lysenko
,
A.
Descamps
,
T.
Nychyporuk
, and
M.
Raynaud
,
J. Phys. D: Appl. Phys.
40
,
6677
6683
(
2007
).
33.
V.
Poborchii
,
N.
Uchida
,
Y.
Miyazaki
,
T.
Tada
,
P. I.
Geshev
,
Z. N.
Utegulov
, and
A.
Volkov
,
Int. J. Heat Mass Transfer
123
,
137
142
(
2018
).
34.
K.
Kim
and
T. E.
Murphy
,
J. Appl. Phys
118
,
154304
(
2015
).
35.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
,
Phys. Rev. B
28
,
1928
1934
(
1983
).
36.
B.
Fodor
,
T.
Defforge
,
E.
Agócs
,
M.
Fried
,
G.
Gautier
, and
P.
Petrik
,
Appl. Surf. Sci.
421
,
397
404
(
2016
).
37.
M.
Mayer
,
AIP Conf. Proc.
475
,
541
544
(
1999
).
38.
E.
Pop
,
S.
Sinha
, and
K. E.
Goodson
,
Proc. IEEE
94
(
8
),
1587
1601
(
2006
).
39.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
,
Phys. Rev. B
72
(
6
),
064305
(
2005
).
40.
S.
Mazumdar
and
A.
Majumdar
,
ASME J. Heat Transfer
123
,
749
759
(
2001
).
41.
E.
Pop
,
R. W.
Dutton
, and
K. E.
Goodson
,
J. Appl. Phys.
96
(
9
),
4998
5005
(
2004
).
42.
Q.
Hao
,
G.
Chen
, and
M. S.
Jeng
,
J. Appl. Phys.
106
(
11
),
114321
(
2009
).
43.
D.
Chakraborty
,
S.
Foster
, and
N.
Neophytou
,
Phys. Rev. B
98
,
115435
(
2018
).
44.
D.
Chakraborty
,
S.
Foster
, and
N.
Neophytou
,
Mater. Today Proc.
8
,
652
(
2019
).
45.
D.
Chakraborty
,
J.
Brooke
,
N. C. S.
Hulse
, and
N.
Neophytou
,
J. Appl. Phys.
126
,
184303
(
2019
).
46.
D.
Chakraborty
,
H.
Karamitaheri
,
L.
Oliveira
, and
N.
Neophytou
,
Comput. Mater. Sci.
180
,
109712
(
2020
).
47.
N.
Neophytou
,
V.
Vargiamidis
,
S.
Foster
,
P.
Graziosi
,
L.
Oliveira
,
D.
Chakraborty
,
Z.
Li
,
M.
Thesberg
,
H.
Kosina
,
N.
Bennett
, and
G.
Pennelli
,
Eur. Phys. J. B
93
,
213
(
2020
).
48.
S.
Wolf
,
N.
Neophytou
, and
H.
Kosina
,
J. Appl. Phys.
115
(
20
),
204306
(
2014
).
49.
S.
Wolf
,
N.
Neophytou
,
Z.
Stanojevic
, and
H.
Kosina
,
J. Electron. Mater.
43
(
10
),
3870
3875
(
2014
).
50.
D.
Chakraborty
,
L.
de Sousa Oliveira
, and
N.
Neophytou
,
J. Electron. Mater.
48
(
4
),
1909
1916
(
2019
).
51.
A.
Mittal
and
S.
Mazumder
,
J. Heat Transfer
132
,
052402
(
2010
).
52.
Y. C.
Hua
and
B. Y.
Cao
,
J. Comput. Phys.
342
,
253
266
(
2017
).
53.
K.
Kadoya
,
N.
Matsunaga
, and
A.
Nagashima
,
J. Phys. Chem. Ref. Data
14
,
947
970
(
1985
).
You do not currently have access to this content.