The groundbreaking discovery of high-order topological insulators has opened the avenues for exploring complex topological states, especially the corner states. Typically, corner states undergo hybridization because of point-group symmetry, leading to degeneracy that has yet to be thoroughly investigated in the realm of higher-order topological states. In this study, we introduce a straightforward yet effective photonic crystal design that facilitates the realization of robust photonic corner states and their intricate hybridization. We reveal that, in addition to the conventional point-group symmetry, the local sublattice symmetry also plays a pivotal role in protecting the corner states. By strategically disrupting the sublattice symmetry, we introduce a tunable mechanism for controlling the hybridization of corner states within our proposed photonic structure. This research sheds light on the symmetrical protection mechanisms of topological corner states in photonic crystals, paving the way for innovative designs of photonic devices leveraging the unique properties of zero-dimensional corner states.

1.
W. A.
Benalcazar
,
B. A.
Bernevig
, and
T. L.
Hughes
, “
Quantized electric multipole insulators
,”
Science
357
,
61
(
2017
).
2.
F.
Schindler
,
A. M.
Cook
,
M. G.
Vergniory
,
Z.
Wang
,
S. S. P.
Parkin
,
B. A.
Bernevig
, and
T.
Neupert
, “
Higher-order topological insulators
,”
Sci. Adv.
4
,
eaat0346
(
2018
).
3.
F.
Liu
, “
Analytic solution of the n-dimensional Su-Schrieffer-Heeger model
,”
Phys. Rev. B
108
,
245140
(
2023
).
4.
A.
Hackenbroich
,
A.
Hudomal
,
N.
Schuch
,
B. A.
Bernevig
, and
N.
Regnault
, “
Fractional chiral hinge insulator
,”
Phys. Rev. B
103
,
L161110
(
2021
).
5.
M. J.
Park
,
Y.
Kim
,
G. Y.
Cho
, and
S.
Lee
, “
Higher-order topological insulator in twisted bilayer graphene
,”
Phys. Rev. Lett.
123
,
216803
(
2019
).
6.
K.
Kudo
,
T.
Yoshida
, and
Y.
Hatsugai
, “
Higher-order topological Mott insulators
,”
Phys. Rev. Lett.
123
,
196402
(
2019
).
7.
Z.
Yan
, “
Higher-order topological odd-parity superconductors
,”
Phys. Rev. Lett.
123
,
177001
(
2019
).
8.
W. A.
Benalcazar
,
T.
Li
, and
T. L.
Hughes
, “
Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators
,”
Phys. Rev. B
99
,
245151
(
2019
).
9.
R.
Queiroz
and
A.
Stern
, “
Splitting the hinge mode of higher-order topological insulators
,”
Phys. Rev. Lett.
123
,
036802
(
2019
).
10.
L.
Trifunovic
and
P. W.
Brouwer
, “
Higher-order bulk-boundary correspondence for topological crystalline phases
,”
Phys. Rev. X
9
,
011012
(
2019
).
11.
Z. F.
Zheng
,
J. F.
Yin
,
J. H.
Wen
, and
D. L.
Yu
, “
Higher-order topological states in locally resonant elastic metamaterials
,”
Appl. Phys. Lett.
120
,
144101
(
2022
).
12.
Y. J.
Qi
,
C. Y.
Qiu
,
M.
Xiao
,
H. L.
He
,
M. Z.
Ke
, and
Z.
Liu
, “
Acoustic realization of quadrupole topological insulators
,”
Phys. Rev. Lett.
124
,
206601
(
2020
).
13.
H. R.
Xue
,
Y. H.
Yang
,
G. G.
Liu
,
F.
Gao
,
Y. D.
Chong
, and
B. L.
Zhang
, “
Realization of an acoustic third-order topological insulator
,”
Phys. Rev. Lett.
122
,
244301
(
2019
).
14.
M.
Weiner
,
X.
Ni
,
M.
Li
,
A.
Alu
, and
A. B.
Khanikaev
, “
Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial
,”
Sci. Adv.
6
,
eaay4166
(
2020
).
15.
H. R.
Xue
,
Y. H.
Yang
,
G. G.
Liu
,
F.
Gao
,
Y. D.
Chong
, and
B. L.
Zhang
, “
Acoustic higher-order topological insulator on a Kagome lattice
,”
Nat. Mater.
18
,
108
112
(
2019
).
16.
X.
Ni
,
M.
Weiner
,
A.
Alu
, and
A. B.
Khanikaev
, “
Observation of higher-order topological acoustic states protected by generalized chiral symmetry
,”
Nat. Mater.
18
,
113
120
(
2019
).
17.
S.
Imhof
,
C.
Berger
,
F.
Bayer
,
J.
Brehm
,
L. W.
Molenkamp
,
T.
Kiessling
,
F.
Schindler
,
C. H.
Lee
,
M.
Greiter
,
T.
Neupert
, and
R.
Thomale
, “
Topolectrical-circuit realization of topological corner modes
,”
Nat. Phys.
14
,
925
929
(
2018
).
18.
H.
Yang
,
Z. X.
Li
,
Y.
Liu
,
Y.
Cao
, and
P.
Yan
, “
Observation of symmetry-protected zero modes in topolectrical circuits
,”
Phys. Rev. Res.
2
,
022028
(
2020
).
19.
C. W.
Peterson
,
B. A.
Bernevig
,
T. L.
Hughes
, and
G.
Bahl
, “
A quantized microwave quadrupole insulator with topologically protected corner states
,”
Nature
555
,
346
350
(
2018
).
20.
B. Y.
Xie
,
G. X.
Su
,
H. F.
Wang
,
H.
Su
,
X. P.
Shen
,
P.
Zhan
,
M. H.
Lu
,
Z. L.
Wang
, and
Y. F.
Chen
, “
Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals
,”
Phys. Rev. Lett.
122
,
233903
(
2019
).
21.
X. D.
Chen
,
W. M.
Deng
,
F. L.
Shi
,
F. L.
Zhao
,
M.
Chen
, and
J. W.
Dong
, “
Direct observation of corner states in second-order topological photonic crystal slabs
,”
Phys. Rev. Lett.
122
,
233902
(
2019
).
22.
B. Y.
Xie
,
H. F.
Wang
,
H. X.
Wang
,
X. Y.
Zhu
,
J. H.
Jiang
,
M. H.
Lu
, and
Y. F.
Chen
, “
Second-order topological insulator with corner states
,”
Phys. Rev. B
98
,
205147
(
2018
).
23.
A.
Hassan
,
F. K.
Kunst
,
A.
Moritz
,
G.
Andler
,
E. J.
Bergholtz
, and
M.
Bourennane
, “
Corner states of light in photonic waveguides
,”
Nat. Photonics
13
,
697
(
2019
).
24.
L.
Zhang
,
Y.
Yang
,
Z. K.
Lin
,
P. F.
Qin
,
Q. L.
Chen
,
F.
Gao
,
E. P.
Li
,
J. H.
Jiang
,
B. L.
Zhang
, and
H. S.
Chen
, “
Higher-order topological states in surface-wave photonic crystals
,”
Adv. Sci.
7
,
1902724
(
2020
).
25.
M.
Li
,
D.
Zhirihin
,
M.
Gorlach
,
X.
Ni
,
D.
Filonov
,
A.
Slobozhanyuk
,
A.
Alu
, and
A. B.
Khanikaev
, “
Higher-order topological states in photonic kagome crystals with long-range interactions
,”
Nat. Photonics
14
,
89
(
2020
).
26.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
, and
I.
Carusotto
, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
27.
M.
Kim
,
Z. H.
Wang
,
Y.
Yang
,
H. T.
Teo
,
J.
Rho
, and
B. L.
Zhang
, “
Three-dimensional photonic topological insulator without spin-orbit coupling
,”
Nat. Commun.
13
,
3499
(
2022
).
28.
F.
Liu
,
H. Y.
Deng
, and
K.
Wakabayashi
, “
Topological photonic crystals with zero Berry curvature
,”
Phys. Rev. B
97
,
035442
(
2018
).
29.
C.
Poli
,
M.
Bellec
,
U.
Kuhl
,
F.
Mortessagne
, and
H.
Schomerus
, “
Selective enhancement of topologically induced interface states in a dielectric resonator chain
,”
Nat. Commun.
6
,
6710
(
2015
).
30.
H.
Xu
,
L.
Jiang
,
A. A.
Clerk
, and
J. G. E.
Harris
, “
Nonreciprocal control and cooling of phonon modes in an optomechanical system
,”
Nature
568
,
65
(
2019
).
31.
X. T.
Gan
,
Y. D.
Gao
,
K. F.
Mak
,
X. W.
Yao
,
R. J.
Shiue
,
A.
van der Zande
,
M. E.
Trusheim
,
F.
Hatami
,
T. F.
Heinz
,
J.
Hone
, and
D.
Englund
, “
Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity
,”
Appl. Phys. Lett.
103
,
181119
(
2013
).
32.
T.
Sunner
,
T.
Stichel
,
S. H.
Kwon
,
T. W.
Schlereth
,
S.
Hofling
,
M.
Kampa
, and
A.
Forchel
, “
Photonic crystal cavity based gas sensor
,”
Appl. Phys. Lett.
92
,
261112
(
2008
).
33.
H. X.
Wang
,
L.
Liang
,
B.
Jiang
,
J. H.
Hu
,
X. C.
Lu
, and
J. H.
Jiang
, “
Higher-order topological phases in tunable C3 symmetric photonic crystals
,”
Photonics Res.
9
,
1854
(
2021
).
34.
K. K.
Om
and
K. H.
Kim
, “
Tunable second-order topological states in rhombic photonic crystals
,”
Phys. Status Solidi RRL
17
,
2300002
(
2023
).
35.
G. H.
Tang
,
Y. L.
Hong
,
R. L.
Zhang
,
R. H.
Fan
,
Z. L.
Ma
,
X. Y.
Wu
,
D. X.
Qi
,
R. W.
Peng
, and
M.
Wang
, “
Adjustable topological corner states in terahertz valley photonic crystals
,”
Phys. Rev. B
108
,
205411
(
2023
).
36.
J.
Wang
,
Y.
Liu
,
D.
Yang
,
Z.
Hu
,
X.
Zhang
,
S.
Xia
,
D.
Song
,
M.
Ren
,
S.
Gao
,
R.
Wang
,
Z.
Chen
, and
J.
Xu
, “
Tunable terahertz topological edge and corner states in designer surface plasmon crystals
,”
Opt. Express
29
,
19531
(
2021
).
37.
Y. L.
Zhao
,
F.
Liang
,
J. F.
Han
,
X. R.
Wang
,
D. S.
Zhao
, and
B. Z.
Wang
, “
Tunable topological edge and corner states in an all-dielectric photonic crystal
,”
Opt. Express
30
,
40515
(
2022
).
38.
Z. J.
Zhang
,
J. B.
Yang
,
T.
Du
,
H. S.
Ma
, and
X. P.
Jiang
, “
Collective topological corner modes in all-dielectric photonic crystal supercell arrays
,”
Opt. Lett.
47
,
1642
(
2022
).
39.
Z.
Zhang
,
J. W.
You
,
Z.
Lan
, and
N. C.
Panoiu
, “
Lattice topological edge and corner modes of photonic crystal slabs
,”
J. Opt.
23
,
095102
(
2021
).
40.
C.
Zhang
and
J.
Mei
, “
Higher-order topological insulator in a spring-mass system
,”
Europhys. Lett.
142
,
26003
(
2023
).
41.
S.
Ikegaya
,
W. B.
Rui
,
D.
Manske
, and
A. P.
Schnyder
, “
Tunable Majorana corner modes in noncentrosymmetric superconductors: Tunneling spectroscopy and edge imperfections
,”
Phys. Rev. Res.
3
,
023007
(
2021
).
42.
H. R.
Kim
,
M. S.
Hwang
,
D.
Smirnova
,
K. Y.
Jeong
,
Y.
Kivshar
, and
H. G.
Park
, “
Multipolar lasing modes from topological corner states
,”
Nat. Commun.
11
,
5758
(
2020
).
43.
J. L.
He
,
S. Y.
Jia
,
Y. X.
Li
,
J. Z.
Hu
,
R. W.
Huang
,
G. G.
Su
,
M. H.
Lu
,
P.
Zhan
, and
F. X.
Liu
, “
Selective activation of topological valley corner states in C3-symmetric photonic crystals
,”
Appl. Phys. Lett.
123
,
031104
(
2023
).
44.
M.
Kim
and
J.
Rho
, “
Topological edge and corner states in a two-dimensional photonic Su-Schrieffer-Heeger lattice
,”
Nanophotonics
9
,
3227
3234
(
2020
).
45.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
(
1979
).
46.
F.
Liu
and
K.
Wakabayashi
, “
Novel topological phase with a zero berry curvature
,”
Phys. Rev. Lett.
118
,
076803
(
2017
).
47.
F.
Liu
and
K.
Wakabayashi
, “
Higher-order topology and fractional charge in monolayer graphene
,”
Phys. Rev. Res.
3
,
023121
(
2021
).
48.
S. B.
Zhang
,
W. B.
Rui
,
A.
Calzona
,
S. J.
Choi
,
A. P.
Schnyder
, and
B.
Trauzettel
, “
Topological and holonomic quantum computation based on second-order topological superconductors
,”
Phys. Rev. Res.
2
,
043025
(
2020
).
49.
T. E.
Pahomi
,
M.
Sigrist
, and
A. A.
Soluyanov
, “
Braiding Majorana corner modes in a second-order topological superconductor
,”
Phys. Rev. Res.
2
,
032068(R)
(
2020
).
You do not currently have access to this content.