We experimentally demonstrate a topologically protected electroacoustic transistor. We construct a reconfigurable phononic analog of the quantum valley-Hall insulator composed of electrically shunted piezoelectric disks bonded to a patterned plate forming a monolithic structure. The device can be dynamically reconfigured to host one or more topological interface states via breaking inversion symmetry through selective powering of shunt circuits. Above a threshold, the amplitude of wave energy at a chosen location in one topological interface creates a second interface by dynamically switching power between two groups of shunts using relays. This enables the flow of wave energy between two locations in the reconfigured interface analogous to the voltage-controlled electron flow in a field effect transistor. The amplitude of wave energy in the second interface is used for bit abstraction to implement acoustic logic. We illustrate the various states of the transistor and experimentally demonstrate wave-based switching. The proposed electroacoustic transistor is envisioned to find applications in wave-based devices and edge computing in extreme environments and inspire novel technologies leveraging acoustic logic.

1.
H.
Yasuda
,
P. R.
Buskohl
,
A.
Gillman
,
T. D.
Murphey
,
S.
Stepney
,
R. A.
Vaia
, and
J. R.
Raney
, “
Mechanical computing
,”
Nature
598
,
39
48
(
2021
).
2.
F.
Zangeneh-Nejad
,
D. L.
Sounas
,
A.
Alù
, and
R.
Fleury
, “
Analogue computing with metamaterials
,”
Nat. Rev. Mater.
6
,
207
225
(
2020
).
3.
A.
Silva
,
F.
Monticone
,
G.
Castaldi
,
V.
Galdi
,
A.
Alù
, and
N.
Engheta
, “
Performing mathematical operations with metamaterials
,”
Science
343
,
160
163
(
2014
).
4.
S.
Abdollahramezani
,
O.
Hemmatyar
, and
A.
Adibi
, “
Meta-optics for spatial optical analog computing
,”
Nanophotonics
9
,
4075
4095
(
2020
).
5.
Z.
Lv
,
P.
Liu
, and
Y.
Pei
, “
Temporal acoustic wave computational metamaterials
,”
Appl. Phys. Lett.
117
(
13
),
131902
(
2020
).
6.
L.
Zhou
and
F.
Wang
, “
Edge computing and machinery automation application for intelligent manufacturing equipment
,”
Microprocessors Microsyst.
87
,
104389
(
2021
).
7.
G.
Qian
,
S.
Lu
,
D.
Pan
,
H.
Tang
,
Y.
Liu
, and
Q.
Wang
, “
Edge computing: A promising framework for real-time fault diagnosis and dynamic control of rotating machines using multi-sensor data
,”
IEEE Sens. J.
19
,
4211
4220
(
2019
).
8.
J. R.
Raney
,
N.
Nadkarni
,
C.
Daraio
,
D. M.
Kochmann
,
J. A.
Lewis
, and
K.
Bertoldi
, “
Stable propagation of mechanical signals in soft media using stored elastic energy
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
9722
9727
(
2016
).
9.
C.
El Helou
,
P. R.
Buskohl
,
C. E.
Tabor
, and
R. L.
Harne
, “
Digital logic gates in soft, conductive mechanical metamaterials
,”
Nat. Commun.
12
,
1633
(
2021
).
10.
Y.
Song
,
R. M.
Panas
,
S.
Chizari
,
L. A.
Shaw
,
J. A.
Jackson
,
J. B.
Hopkins
, and
A. J.
Pascall
, “
Additively manufacturable micro-mechanical logic gates
,”
Nat. Commun.
10
,
882
(
2019
).
11.
S.
Ilyas
and
M. I.
Younis
, “
Resonator-based M/NEMS logic devices: Review of recent advances
,”
Sens. Actuators, A
302
,
111821
(
2020
).
12.
S.
Babaee
,
N.
Viard
,
P.
Wang
,
N. X.
Fang
, and
K.
Bertoldi
, “
Harnessing deformation to switch on and off the propagation of sound
,”
Adv. Mater.
28
,
1631
1635
(
2016
).
13.
P.
Xue
,
H.
Dai
, and
L.
Zhou
, “
Acoustic switch via a compressible minimal surface structure
,”
Adv. Eng. Mater.
25
,
2201144
(
2023
).
14.
H.
Dai
,
P.
Xue
,
E.
Lu
,
L.
Wang
, and
L.
Zhou
, “
Experimental realization of a soft topological acoustic switch
,”
Phys. Rev. B
107
,
144105
(
2023
).
15.
F.
Li
,
P.
Anzel
,
J.
Yang
,
P. G.
Kevrekidis
, and
C.
Daraio
, “
Granular acoustic switches and logic elements
,”
Nat. Commun.
5
,
5311
(
2014
).
16.
T.
Zhang
,
Y.
Cheng
,
B.-G.
Yuan
,
J.-Z.
Guo
, and
X.-J.
Liu
, “
Compact transformable acoustic logic gates for broadband complex Boolean operations based on density-near-zero metamaterials
,”
Appl. Phys. Lett.
108
,
183508
(
2016
).
17.
Y.
Wang
,
J-p
Xia
,
H-x
Sun
,
S-q
Yuan
, and
X-j
Liu
, “
Binary-phase acoustic passive logic gates
,”
Sci. Rep.
9
,
8355
(
2019
).
18.
T.
Zhang
,
Y.
Cheng
,
J-z
Guo
,
J-y
Xu
, and
X-j
Liu
, “
Acoustic logic gates and Boolean operation based on self-collimating acoustic beams
,”
Appl. Phys. Lett.
106
,
113503
(
2015
).
19.
J.
Ding
,
X.
Wang
,
L.
Gu
,
S.
Li
,
X.
Luo
,
C.
Zhao
, and
Z.
Huang
, “
Continuous and rapid sound regulation via a compact linear electroacoustic field effect transistor
,”
Phys. Rev. Res.
3
,
043206
(
2021
).
20.
A.
Darabi
,
M.
Collet
, and
M. J.
Leamy
, “
Experimental realization of a reconfigurable electroacoustic topological insulator
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
16138
16142
(
2020
).
21.
J.-P.
Xia
,
D.
Jia
,
H.-X.
Sun
,
S.-Q.
Yuan
,
Y.
Ge
,
Q.-R.
Si
, and
X.-J.
Liu
, “
Programmable coding acoustic topological insulator
,”
Adv. Mater.
30
,
1805002
(
2018
).
22.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
, “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
,
516
519
(
2014
).
23.
Z.
Yang
,
F.
Gao
,
X.
Shi
,
X.
Lin
,
Z.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Topological acoustics
,”
Phys. Rev. Lett.
114
,
114301
(
2015
).
24.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
, “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
(
2016
).
25.
F.
Haldane
and
S.
Raghu
, “
Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
,”
Phys. Rev. Lett.
100
,
013904
(
2008
).
26.
A. B.
Khanikaev
,
S. H.
Mousavi
,
W.-K.
Tse
,
M.
Kargarian
,
A. H.
MacDonald
, and
G.
Shvets
, “
Photonic topological insulators
,”
Nat. Mater.
12
,
233
(
2013
).
27.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
28.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
(
2011
).
29.
F.
Zangeneh-Nejad
,
A.
Alù
, and
R.
Fleury
, “
Topological wave insulators: A review
,”
C. R. Phys.
21
,
467
499
(
2020
).
30.
M.
Miniaci
and
R.
Pal
, “
Design of topological elastic waveguides
,”
J. Appl. Phys.
130
(
14
),
141101
(
2021
).
31.
H.
Zhu
,
T.-W.
Liu
, and
F.
Semperlotti
, “
Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides
,”
Phys. Rev. B
97
,
174301
(
2018
).
32.
M.
Miniaci
,
R.
Pal
,
B.
Morvan
, and
M.
Ruzzene
, “
Experimental observation of topologically protected helical edge modes in patterned elastic plates
,”
Phys. Rev. X
8
,
031074
(
2018
).
33.
M.
Miniaci
,
R. K.
Pal
,
R.
Manna
, and
M.
Ruzzene
, “
Valley-based splitting of topologically protected helical waves in elastic plates
,”
Phys. Rev. B
100
,
024304
(
2019
).
34.
T.-W.
Liu
and
F.
Semperlotti
, “
Tunable acoustic valley–Hall edge states in reconfigurable phononic elastic waveguides
,”
Phys. Rev. Appl.
9
,
014001
(
2018
).
35.
T.-W.
Liu
and
F.
Semperlotti
, “
Experimental evidence of robust acoustic valley Hall edge states in a nonresonant topological elastic waveguide
,”
Phys. Rev. Appl.
11
,
014040
(
2019
).
36.
J.
Ma
,
K.
Sun
, and
S.
Gonella
, “
Valley Hall in-plane edge states as building blocks for elastodynamic logic circuits
,”
Phys. Rev. Appl.
12
,
044015
(
2019
).
37.
J.
Vila
,
R. K.
Pal
, and
M.
Ruzzene
, “
Observation of topological valley modes in an elastic hexagonal lattice
,”
Phys. Rev. B
96
,
134307
(
2017
).
38.
S. S.
Ganti
,
T.-W.
Liu
, and
F.
Semperlotti
, “
Topological edge states in phononic plates with embedded acoustic black holes
,”
J. Sound Vib.
466
,
115060
(
2020
).
39.
J.
Noh
,
S.
Huang
,
K. P.
Chen
, and
M. C.
Rechtsman
, “
Observation of photonic topological valley Hall edge states
,”
Phys. Rev. Lett.
120
,
063902
(
2018
).
40.
S. H.
Mousavi
,
A. B.
Khanikaev
, and
Z.
Wang
, “
Topologically protected elastic waves in phononic metamaterials
,”
Nat. Commun.
6
,
8682
(
2015
).
41.
M.
Yan
,
J.
Lu
,
F.
Li
,
W.
Deng
,
X.
Huang
,
J.
Ma
, and
Z.
Liu
, “
On-chip valley topological materials for elastic wave manipulation
,”
Nat. Mater.
17
,
993
998
(
2018
).
42.
A.
Darabi
,
E.
Kliewer
, and
M. J.
Leamy
, “
Reconfigurable acoustic multiplexer/demultiplexer using time division
,”
Appl. Phys. Lett.
119
,
113501
(
2021
).
43.
B. S.
Beck
,
K. A.
Cunefare
,
M.
Ruzzene
, and
M.
Collet
, “
Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array
,”
J. Intell. Mater. Syst. Struct.
22
,
1177
1187
(
2011
).
44.
F.
Casadei
,
T.
Delpero
,
A.
Bergamini
,
P.
Ermanni
, and
M.
Ruzzene
, “
Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials
,”
J. Appl. Phys.
112
(
6
),
064902
(
2012
).
45.
F.
Tateo
,
M.
Collet
,
M.
Ouisse
,
M.
Ichchou
,
K.
Cunefare
, and
P.
Abbé
, “
Experimental characterization of a bi-dimensional array of negative capacitance piezo-patches for vibroacoustic control
,”
J. Intell. Mater. Syst. Struct.
26
,
952
964
(
2015
).
46.
O. R.
Bilal
,
A.
Foehr
, and
C.
Daraio
, “
Bistable metamaterial for switching and cascading elastic vibrations
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
4603
4606
(
2017
).
47.
O. R.
Bilal
,
A.
Foehr
, and
C.
Daraio
, “
Reprogrammable phononic metasurfaces
,”
Adv. Mater.
29
,
1700628
(
2017
).
48.
S.
Li
,
B.
Deng
,
A.
Grinthal
,
A.
Schneider-Yamamura
,
J.
Kang
,
R. S.
Martens
,
C. T.
Zhang
,
J.
Li
,
S.
Yu
,
K.
Bertoldi
et al, “
Liquid-induced topological transformations of cellular microstructures
,”
Nature
592
,
386
391
(
2021
).
49.
A. S.
Gliozzi
,
M.
Miniaci
,
A.
Chiappone
,
A.
Bergamini
,
B.
Morin
, and
E.
Descrovi
, “
Tunable photo-responsive elastic metamaterials
,”
Nat. Commun.
11
,
2576
(
2020
).
50.
Y.-F.
Wang
,
Y.-Z.
Wang
,
B.
Wu
,
W.
Chen
, and
Y.-S.
Wang
, “
Tunable and active phononic crystals and metamaterials
,”
Appl. Mech. Rev.
72
,
040801
(
2020
).
51.
H.
Pirie
,
S.
Sadhuka
,
J.
Wang
,
R.
Andrei
, and
J. E.
Hoffman
, “
Topological phononic logic
,”
Phys. Rev. Lett.
128
,
015501
(
2022
).
52.
A.
Darabi
,
X.
Ni
,
M.
Leamy
, and
A.
Alù
, “
Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias
,”
Sci. Adv.
6
,
eaba8656
(
2020
).
53.
S. A. R.
Kuchibhatla
and
M. J.
Leamy
, “
Numerical demonstration of a topologically-protected electroacoustic transistor
,”
Front. Acoust.
1
,
1251215
(
2023
).
54.
A. S.
Sedra
and
K. C.
Smith
,
Microelectronic Circuits
(
Oxford University Press
,
New York
,
1998
).
55.
COMSOL Multiphysics
, v. 6.0, COMSOL AB, Stockholm, Sweden,
2022
, www.comsol.com.
56.
J.
Mei
,
Y.
Wu
,
C. T.
Chan
, and
Z.-Q.
Zhang
, “
First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals
,”
Phys. Rev. B
86
,
035141
(
2012
).
57.
Y.
Li
,
Y.
Wu
, and
J.
Mei
, “
Double Dirac cones in phononic crystals
,”
Appl. Phys. Lett.
105
,
014107
(
2014
).
You do not currently have access to this content.