This Letter demonstrates a high-performance 3.3 kV-class β-Ga2O3 vertical heterojunction diode (HJD) along with an investigation into its off-state leakage mechanism. The vertical β-Ga2O3 HJD with field plate assisted deep mesa (FPDM) termination was fabricated using a self-aligned technique to etch the deep mesa to a depth of 9 μm, thereby reducing electric field crowding at the anode edge. In addition, a thick dielectric is deposited to fill the trench, facilitating the utilization of a field plate to further reduce the electric field at the anode edge. TCAD (Technology Computer Aided Design) simulations show significant suppression of electric field crowding at the anode edge. The fabricated HJD exhibits a high current swing of ∼1010 over a temperature range from 25 °C to 175 °C. The specific on-resistance (Ron,sp) is extracted to be 3.9 mΩ cm2, and the breakdown voltage is 3.42 kV with the FPDM termination. These conduction and blocking characteristics lead to a high power figure of merit of 3 GW/cm2, which is one of the highest among multi-kilovolt β-Ga2O3 diodes. Furthermore, the off-state current leakage mechanism of the HJD under a reverse bias up to 2000 V was investigated. The fitted results reveal that the leakage current is primarily dominated by Poole–Frenkel (PF) emission, with the trap level of PF extracted to be 0.36 eV below the conduction band of NiO.

1.
Y.
Zhang
,
F.
Udrea
, and
H.
Wang
,
Nat. Electron.
5
,
723
(
2022
).
2.
H.
Wang
,
C.
Wang
,
B.
Wang
,
N.
Ren
, and
K.
Sheng
,
IEEE Electron Device Lett.
41
(
3
),
445
(
2020
).
3.
H.
Wang
,
C.
Wang
,
B.
Wang
,
H.
Long
, and
K.
Sheng
,
IEEE Electron Device Lett.
42
(
2
),
216
(
2021
).
4.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
, IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
5.
Y.
Ma
,
M.
Porter
,
Y.
Qin
,
J.
Spencer
,
Z.
Du
,
M.
Xiao
,
Y.
Wang
,
I.
Kravchenko
,
D. P.
Briggs
,
D. K.
Hensley
,
F.
Udrea
,
M.
Tadjer
,
H.
Wang
, and
Y.
Zhang
,
IEEE Electron Device Lett.
45
(
1
),
12
(
2024
).
6.
Y.
Qin
,
M.
Xiao
,
R.
Zhang
,
Q.
Xie
,
T.
Palacios
,
B.
Wang
,
Y.
Ma
,
I.
Kravchenko
,
D. P.
Briggs
,
D. K.
Hensley
,
B. R.
Srijanto
, and
Y.
Zhang
,
IEEE Electron Device Lett.
44
(
7
),
1052
(
2023
).
7.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
,
Appl. Phys. Rev.
9
(
1
),
011315
(
2022
).
8.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Semicond. Sci. Technol.
31
(
3
),
034001
(
2016
).
9.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
,
Nat. Commun.
13
(
1
),
3900
(
2022
).
10.
R.
Sharma
,
M.
Xian
,
C.
Fares
,
M. E.
Law
,
M.
Tadjer
,
K. D.
Hobart
,
F.
Ren
, and
S. J.
Pearton
,
J. Vac. Sci. Technol., A
39
,
013406
(
2021
).
11.
M.
Xiao
,
B.
Wang
,
J.
Liu
,
R.
Zhang
,
Z.
Zhang
,
C.
Ding
,
S.
Lu
,
K.
Sasaki
,
G.-Q.
Lu
,
C.
Buttay
, and
Y.
Zhang
,
IEEE Trans. Power Electron.
36
,
8565
(
2021
).
12.
B.
Wang
,
M.
Xiao
,
J.
Knoll
,
C.
Buttay
,
K.
Sasaki
,
G.-Q.
Lu
,
C.
Dimarino
, and
Y.
Zhang
,
IEEE Electron Device Lett.
42
,
1132
(
2021
).
13.
H.
Gong
,
F.
Zhou
,
X.
Yu
,
W.
Xu
,
F.-F.
Ren
,
S.
Gu
,
H.
Lu
,
J.
Ye
, and
R.
Zhang
,
IEEE Electron Device Lett.
43
,
773
(
2022
).
14.
C.
Wang
,
Q.
Yan
,
C.
Su
,
S.
Alghamdi
,
E.
Ghandourah
,
Z.
Liu
,
X.
Feng
,
W.
Zhang
,
K.
Dang
,
Y.
Wang
,
J.
Wang
,
J.
Zhang
,
H.
Zhou
, and
Y.
Hao
,
IEEE Electron Device Lett.
44
(
3
),
380
(
2023
).
15.
C.
Wang
,
H.
Gong
,
W.
Lei
,
Y.
Cai
,
Z.
Hu
,
S.
Xu
,
Z.
Liu
,
Q.
Feng
,
H.
Zhou
,
J.
Ye
,
J.
Zhang
,
R.
Zhang
, and
Y.
Hao
,
IEEE Electron Device Lett.
42
(
4
),
485
(
2021
).
16.
Y.
Ma
,
Y.
Qin
,
M.
Porter
,
J.
Spencer
,
Z.
Du
,
M.
Xiao
,
B.
Wang
,
Y.
Wang
,
A.
Jacobs
,
H.
Wang
,
M.
Tadjer
, and
Y.
Zhang
,
Adv. Electron. Mater.
09
(
12
),
2300662
(
2023
).
17.
X.
Lu
,
X.
Zhou
,
H.
Jiang
,
K.
Ng
,
Z.
Chen
,
Y.
Pei
,
K.
Lau
, and
G.
Wang
,
IEEE Electron Device Lett.
41
(
3
),
449
(
2020
).
18.
B.
Wang
,
M.
Xiao
,
J.
Spencer
,
Y.
Qin
,
K.
Sasaki
,
M.
Tadjer
, and
Y.
Zhang
,
IEEE Electron Device Lett.
44
(
2
),
221
(
2023
).
19.
Y.
Qin
,
M.
Xiao
,
M.
Porter
,
Y.
Ma
,
J.
Spencer
,
Z.
Du
,
A.
Jacobs
,
K.
Sasaki
,
H.
Wang
,
M.
Tadjer
, and
Y.
Zhang
,
IEEE Electron Device Lett.
44
(
8
),
1268
(
2023
).
20.
F.
Zhou
,
H.
Gong
,
M.
Xiao
,
Y.
Ma
,
Z.
Wang
,
X.
Yu
,
L.
Li
,
L.
Fu
,
H. H.
Tan
,
Y.
Yang
,
F. F.
Ren
,
S.
Gu
,
Y.
Zheng
,
H.
Lu
,
R.
Zhang
,
Y.
Zhang
, and
J.
Ye
,
Nat. Commun.
14
(
1
),
4459
(
2023
).
21.
E.
Chikoidze
,
A.
Fellous
,
A.
Perez-Tomas
,
G.
Sauthier
,
T.
Tchelidze
,
C.
Ton-That
,
T. T.
Huynh
,
M.
Phillips
,
S.
Russell
,
M.
Jennings
,
B.
Berini
,
F.
Jomard
, and
Y.
Dumont
,
Mater. Today Phys.
3
,
118
126
(
2017
).
22.
K.
Zeng
,
R.
Soman
,
Z.
Bian
,
S.
Jeong
, and
S.
Chowdhury
,
IEEE Electron Device Lett.
43
(
9
),
1527
1530
(
2022
).
23.
Y.
Ma
,
X.
Zhou
,
W.
Tang
,
X.
Zhang
,
G.
Xu
,
L.
Zhang
,
T.
Chen
,
S.
Dai
,
C.
Bian
,
B.
Li
,
Z.
Zeng
, and
S.
Long
,
IEEE Electron Device Lett.
44
(
3
),
384
387
(
2023
).
24.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
(
10
),
103506
(
2017
).
25.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
41
(
1
),
107
110
(
2020
).
26.
S.
Dhara
,
N. K.
Kalarickal
,
A.
Dheenan
,
S. I.
Rahman
,
C.
Joishi
, and
S.
Rajan
,
Appl. Phys. Lett.
123
(
2
),
023503
(
2023
).
27.
S.
Roy
,
B.
Kostroun
,
J.
Cooke
,
Y.
Liu
,
A.
Bhattacharyya
,
C.
Peterson
,
B. S.
Rodriguez
, and
S.
Krishnamoorthy
,
Appl. Phys. Lett.
123
,
243502
(
2023
).
28.
Q.
He
,
X.
Zhou
,
Q.
Li
,
W.
Hao
,
Q.
Liu
,
Z.
Han
,
K.
Zhou
,
C.
Chen
,
J.
Peng
,
G.
Xu
,
X.
Zhao
,
X.
Wu
, and
S.
Long
,
IEEE Electron Device Lett.
43
(
11
),
1933
1936
(
2022
).
29.
C.-H.
Lin
,
Y.
Yuda
,
M. H.
Wong
,
M.
Sato
,
N.
Takekawa
,
K.
Konishi
,
T.
Watahiki
,
M.
Yamamuka
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
40
(
9
),
1487
1490
(
2019
).
30.
S.
Roy
,
A.
Bhattacharyya
,
P.
Ranga
,
H.
Splawn
,
J.
Leach
, and
S.
Krishnamoorthy
,
IEEE Electron Device Lett.
42
(
8
),
1140
1143
(
2021
).
31.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
,
Appl. Phys. Lett.
122
(
15
),
152101
(
2023
).
32.
S.
Roy
,
A.
Bhattacharyya
,
C.
Peterson
, and
S.
Krishnamoorthy
,
IEEE Electron Device Lett.
43
(
12
),
2037
2040
(
2022
).
33.
E.
Farzana
,
S.
Roy
,
N. S.
Hendricks
,
S.
Krishnamoorthy
, and
J. S.
Speck
,
Appl. Phys. Lett.
123
(
19
),
192102
(
2023
).
34.
W.
Hao
,
F.
Wu
,
W.
Li
,
G.
Xu
,
X.
Xie
,
K.
Zhou
,
W.
Guo
,
X.
Zhou
,
Q.
He
,
X.
Zhao
,
S.
Yang
, and
S.
Long
,
IEEE Trans. Electron Devices
70
(
4
),
2129
2134
(
2023
).
35.
M.
Xiao
,
B.
Wang
,
J.
Spencer
,
Y.
Qin
,
M.
Porter
,
Y.
Ma
,
Y.
Wang
,
K.
Sasaki
,
M.
Tadjer
, and
Y.
Zhang
,
Appl. Phys. Lett.
122
(
18
),
183501
(
2023
).
36.
S.
Dhara
,
N. K.
Kalarickal
,
A.
Dheenan
,
C.
Joishi
, and
S.
Rajan
,
Appl. Phys. Lett.
121
(
20
),
203501
(
2022
).
37.
H.
Chen
,
H.
Wang
, and
K.
Sheng
,
IEEE Electron Device Lett.
44
(
1
),
21
24
(
2023
).
38.
Z.
Han
,
G.
Jian
,
X.
Zhou
,
Q.
He
,
W.
Hao
,
J.
Liu
,
B.
Li
,
H.
Huang
,
Q.
Li
,
X.
Zhao
,
G.
Xu
, and
S.
Long
,
IEEE Electron Device Lett.
44
(
10
),
1680
1683
(
2023
).
39.
P.
Dong
,
J.
Zhang
,
Q.
Yan
,
Z.
Liu
,
P.
Ma
,
H.
Zhou
, and
Y.
Hao
,
IEEE Electron Device Lett.
43
(
5
),
765
768
(
2022
).
40.
M.
Xiao
,
Y.
Ma
,
Z.
Du
,
Y.
Qin
,
K.
Liu
,
K.
Cheng
,
F.
Udrea
,
A.
Xie
,
E.
Beam
,
B.
Wang
,
J.
Spencer
,
M.
Tadjer
,
T.
Anderson
,
H.
Wang
, and
Y.
Zhang
, in
IEEE IEDM
(
IEEE
,
2022
).
41.
W.
Kwon
,
S.
Kawasaki
,
H.
Watanabe
,
A.
Tanaka
,
Y.
Honda
,
H.
Ikeda
,
K.
Iso
, and
H.
Amano
,
IEEE Electron Device Lett.
44
,
1172
1175
(
2023
).
42.
M.
Lee
,
H. U.
Lee
,
K. M.
Song
, and
J.
Kim
,
Sci. Rep.
9
,
970
(
2019
).
43.
W.
Hao
,
Q.
He
,
X.
Zhou
,
X.
Zhao
,
G.
Xu
, and
S.
Long
, in
IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2022
).
44.
H.
Gong
,
X.
Yu
,
Y.
Xu
,
X.
Chen
,
Y.
Kuang
,
Y.
Lv
,
Y.
Yang
,
F.
Ren
,
Z.
Feng
,
S.
Gu
,
Y.
Zheng
,
R.
Zhang
, and
J.
Ye
,
Appl. Phys. Lett.
118
(
20
),
202102
(
2021
).
45.
J.
Montes
,
C.
Kopas
,
H.
Chen
,
X.
Huang
,
T.
Yang
,
K.
Fu
,
C.
Yang
,
J.
Zhou
,
X.
Qi
,
H.
Fu
, and
Y.
Zhao
,
J. Appl. Phys.
128
(
20
),
205701
(
2020
).
46.
C.
Santi
,
M.
Fregolent
,
M.
Buffolo
,
M.
Wong
,
M.
Higashiwaki
,
G.
Meneghesso
,
E.
Zanoni
, and
M.
Meneghini
,
Appl. Phys. Lett.
117
(
26
),
262108
(
2020
).
47.
J.
Li
,
C.
Chiang
,
X.
Xia
,
T.
Yoo
,
F.
Ren
,
H.
Kim
, and
S. J.
Pearton
,
Appl. Phys. Lett.
121
(
4
),
042105
(
2022
).
48.
Y.
Wang
,
H.
Gong
,
Y.
Lv
,
X.
Fu
,
S.
Dun
,
T.
Han
,
H.
Liu
,
X.
Zhou
,
S.
Liang
,
J.
Ye
,
R.
Zhang
,
A.
Bu
,
S.
Cai
, and
Z.
Feng
,
IEEE Trans. Power Electron.
37
(
4
),
3743
3746
(
2022
).
You do not currently have access to this content.