The development of high performance wide-bandgap AlGaN channel transistors with high current densities and reduced Ohmic losses necessitates extremely highly doped, high Al content AlGaN epilayers for regrown source/drain contact regions. In this work, we demonstrate the achievement of semi-metallic conductivity in silicon (Si) doped N-polar Al0.6Ga0.4N grown on C-face 4H-SiC substrates by molecular beam epitaxy. Under optimized conditions, the AlGaN epilayer shows smooth surface morphology and a narrow photoluminescence spectral linewidth, without the presence of any secondary peaks. A favorable growth window is identified wherein the free electron concentration reaches as high as ∼1.8 × 1020 cm−3 as obtained from Hall measurements, with a high mobility of 34 cm2/V·s, leading to a room temperature resistivity of only 1 mΩ·cm. Temperature-dependent Hall measurements show that the electron concentration, mobility, and sheet resistance do not depend on temperature, clearly indicating dopant Mott transition to a semi-metallic state, wherein the activation energy (Ea) falls to 0 meV at this high value of Si doping for the AlGaN films. This achievement of semi-metallic conductivity in Si doped N-polar high Al content AlGaN is instrumental for advancing ultrawide bandgap electronic and optoelectronic devices.

1.
O.
Ambacher
,
J. Phys. D: Appl. Phys.
31
(
20
),
2653
(
1998
).
2.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
,
Proc. IEEE
90
(
6
),
1022
(
2002
).
3.
T.
Paskova
,
D. A.
Hanser
, and
K. R.
Evans
,
Proc. IEEE
98
(
7
),
1324
(
2010
).
4.
Y.
Wu
,
X.
Liu
,
A.
Pandey
,
P.
Zhou
,
W. J.
Dong
,
P.
Wang
,
J.
Min
,
P.
Deotare
,
M.
Kira
, and
E.
Kioupakis
,
Prog. Quant. Electron.
85
,
100401
(
2022
).
5.
A.
Pandey
and
Z.
Mi
,
IEEE J. Quant. Electron.
58
(
4
),
1
(
2022
).
6.
S.
Mondal
,
D.
Wang
,
A. F. M.
Anhar Uddin Bhuiyan
,
M.
Hu
,
M.
Reddeppa
,
P.
Wang
,
H.
Zhao
, and
Z.
Mi
,
Appl. Phys. Lett.
123
(
18
),
182106
(
2023
).
7.
D.
Li
,
K.
Jiang
,
X.
Sun
, and
C.
Guo
,
Adv. Opt. Photonics
10
(
1
),
43
(
2018
).
8.
B.
Sarkar
,
S.
Washiyama
,
M. H.
Breckenridge
,
A.
Klump
,
J. N.
Baker
,
P.
Reddy
,
J.
Tweedie
,
S.
Mita
,
R.
Kirste
, and
D. L.
Irving
,
ECS Trans.
86
(
12
),
25
(
2018
).
9.
N. F.
Mott
,
Can. J. Phys.
34
(
12A
),
1356
(
1956
).
10.
A.
Ajay
,
J.
Schörmann
,
M.
Jiménez-Rodriguez
,
C. B.
Lim
,
F.
Walther
,
M.
Rohnke
,
I.
Mouton
,
L.
Amichi
,
C.
Bougerol
, and
M. I.
Den Hertog
,
J. Phys. D: Appl. Phys.
49
(
44
),
445301
(
2016
).
11.
E.
Prati
,
M.
Hori
,
F.
Guagliardo
,
G.
Ferrari
, and
T.
Shinada
,
Nat. Nanotechnol.
7
(
7
),
443
(
2012
).
12.
M.
Benzaquen
,
D.
Walsh
, and
K.
Mazuruk
,
Phys. Rev. B
36
(
9
),
4748
(
1987
).
13.
R.
Collazo
,
S.
Mita
,
J.
Xie
,
A.
Rice
,
J.
Tweedie
,
R.
Dalmau
, and
Z.
Sitar
,
Phys. Status Solidi c
8
(
7‐8
),
2031
(
2011
).
14.
J.
Li
,
K. B.
Nam
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
79
(
20
),
3245
(
2001
).
15.
S.
Bharadwaj
,
S. M.
Islam
,
K.
Nomoto
,
V.
Protasenko
,
A.
Chaney
,
H. G.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
114
(
11
),
113501
(
2019
).
16.
B.
Borisov
,
V.
Kuryatkov
,
Y.
Kudryavtsev
,
R.
Asomoza
,
S.
Nikishin
,
D. Y.
Song
,
M.
Holtz
, and
H.
Temkin
,
Appl. Phys. Lett.
87
(
13
),
132106
(
2005
).
17.
J. S.
Harris
,
J. N.
Baker
,
B. E.
Gaddy
,
I.
Bryan
,
Z.
Bryan
,
K. J.
Mirrielees
,
P.
Reddy
,
R.
Collazo
,
Z.
Sitar
, and
D. L.
Irving
,
Appl. Phys. Lett.
112
(
15
),
152101
(
2018
).
18.
P.
Wang
,
D.
Wang
,
S.
Mondal
,
Y.
Wu
,
T.
Ma
, and
Z.
Mi
,
ACS Appl. Mater. Int.
14
(
13
),
15747
(
2022
).
19.
J.
Singhal
,
J.
Encomendero
,
Y.
Cho
,
L.
van Deurzen
,
Z.
Zhang
,
K.
Nomoto
,
M.
Toita
,
H. G.
Xing
, and
D.
Jena
,
AIP Adv.
12
(
9
),
095314
(
2022
).
20.
S.
Bajaj
,
F.
Akyol
,
S.
Krishnamoorthy
,
Y.
Zhang
, and
S.
Rajan
,
Appl. Phys. Lett.
109
(
13
),
133508
(
2016
).
21.
I.
Abid
,
J.
Mehta
,
Y.
Cordier
,
J.
Derluyn
,
S.
Degroote
,
H.
Miyake
, and
F.
Medjdoub
,
Electronics
10
(
6
),
635
(
2021
).
22.
J.
Lemettinen
,
H.
Okumura
,
I.
Kim
,
C.
Kauppinen
,
T.
Palacios
, and
S.
Suihkonen
,
J. Cryst. Growth
487
,
12
(
2018
).
23.
C. J.
Zollner
,
Y.
Yao
,
M.
Wang
,
F.
Wu
,
M.
Iza
,
J. S.
Speck
,
S. P.
DenBaars
, and
S.
Nakamura
,
Crystals
11
(
8
),
1006
(
2021
).
24.
J.
Wang
,
B. K.
SaifAddin
,
C. J.
Zollner
,
B.
Bonef
,
A. S.
Almogbel
,
Y.
Yao
,
M.
Iza
,
Y.
Zhang
,
M. N.
Fireman
, and
E. C.
Young
,
Opt. Exp.
29
(
25
),
40781
(
2021
).
25.
M. L.
Nakarmi
,
K. H.
Kim
,
K.
Zhu
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
85
(
17
),
3769
(
2004
).
26.
M.
Hu
,
P.
Wang
,
D.
Wang
,
Y.
Wu
,
S.
Mondal
,
D.
Wang
,
E.
Ahmadi
,
T.
Ma
, and
Z.
Mi
,
APL Mater.
11
(
12
),
121111
(
2023
).
27.
J.
Lu
,
J.-T.
Chen
,
M.
Dahlqvist
,
R.
Kabouche
,
F.
Medjdoub
,
J.
Rosen
,
O.
Kordina
, and
L.
Hultman
,
Appl. Phys. Lett.
115
(
22
),
221601
(
2019
).
28.
S.
Washiyama
,
P.
Reddy
,
B.
Sarkar
,
M. H.
Breckenridge
,
Q.
Guo
,
P.
Bagheri
,
A.
Klump
,
R.
Kirste
,
J.
Tweedie
, and
S.
Mita
,
J. Appl. Phys.
127
(
10
),
105702
(
2020
).
29.
A. S.
Almogbel
,
C. J.
Zollner
,
B. K.
Saifaddin
,
M.
Iza
,
J.
Wang
,
Y.
Yao
,
M.
Wang
, and
H.
Foronda
, “
Igor Prozheev, and Filip Tuomisto
,”
AIP Adv.
11
(
9
),
095119
(
2021
).
30.
S.
Zhao
,
S. Y.
Woo
,
M.
Bugnet
,
X.
Liu
,
J.
Kang
,
G. A.
Botton
, and
Z.
Mi
,
Nano Lett.
15
(
12
),
7801
(
2015
).
31.
S.
Marcinkevičius
,
R.
Jain
,
M.
Shatalov
,
J.
Yang
,
M.
Shur
, and
R.
Gaska
,
Appl. Phys. Lett.
105
(
24
),
241108
(
2014
).
32.
A.
Sedhain
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
100
(
22
),
221107
(
2012
).
33.
P.
Reddy
,
Q.
Guo
,
J.
Tweedie
,
S.
Washiyama
,
F.
Kaess
,
S.
Mita
,
M. H.
Breckenridge
,
R.
Kirste
,
R.
Collazo
, and
A.
Klump
,
Presented at the 2018 IEEE Research and Applications of Photonics in Defense Conference (RAPID)
(
2018
).
34.
I.
Bryan
,
Z.
Bryan
,
S.
Washiyama
,
P.
Reddy
,
B.
Gaddy
,
B.
Sarkar
,
M.
Hayden Breckenridge
,
Q.
Guo
,
M.
Bobea
, and
J.
Tweedie
,
Appl. Phys. Lett.
112
(
6
),
062102
(
2018
).
35.
F.
Kaess
,
S.
Mita
,
J.
Xie
,
P.
Reddy
,
A.
Klump
,
L. H.
Hernandez-Balderrama
,
S.
Washiyama
,
A.
Franke
,
R.
Kirste
,
A.
Hoffmann
,
R.
Collazo
, and
Z.
Sitar
,
J. Appl. Phys.
120
,
105701
(
2016
).
36.
E. C. H.
Kyle
,
S. W.
Kaun
,
P. G.
Burke
,
F.
Wu
,
Y.-R.
Wu
, and
J. S.
Speck
,
J. Appl. Phys.
115
(
19
),
193702
(
2014
).
37.
D. C.
Look
and
R. J.
Molnar
,
Appl. Phys. Lett.
70
,
3377
(
1997
).
38.
K.
Nagata
,
H.
Makino
,
T.
Yamamoto
,
K.
Kataoka
,
T.
Narita
, and
Y.
Saito
,
Appl. Phys. Exp.
13
(
2
),
025504
(
2020
).
39.
J.
Pyeon
,
J.
Kim
,
M.
Jeon
,
K.
Ko
,
E.
Shin
, and
O.
Nam
,
Jpn. J. Appl. Phys.
54
(
5
),
051002
(
2015
).
40.
S.
Xu
,
X.
Zhang
,
X.
Luo
,
R.
Fang
,
J.
Lyu
,
M.-J.
Lai
, and
G.
Hu
,
Mater. Sci. Semicond. Process.
160
,
107447
(
2023
).
41.
R.
France
,
T.
Xu
,
P.
Chen
,
R.
Chandrasekaran
, and
T. D.
Moustakas
,
Appl. Phys. Lett.
90
(
6
),
062115
(
2007
).
42.
J.
Yang
,
Y. H.
Zhang
,
D. G.
Zhao
,
P.
Chen
,
Z. S.
Liu
, and
F.
Liang
,
J. Cryst. Growth
570
,
126245
(
2021
).
You do not currently have access to this content.