Organic phototransistors (OPTs) have emerged as promising candidates for advanced photodetector applications due to their high sensitivity, flexibility, and low-power operation. However, the photodetection performance of traditional OPTs with lateral structures is often compromised by extended charge carrier transport paths, leading to increased carrier trapping or recombination. Addressing this challenge, we introduce vertical organic phototransistors (VOPTs) with significantly shorter channel lengths (about 150 nm), aiming to enhance photoresponse performance. Through the fabrication of VOPTs incorporating PDVT-10:Y6 bulk heterojunctions, and a detailed investigation into the optimization strategies, we achieved a substantial improvement in device performance. The optimized VOPTs exhibited a photoresponsivity of 0.4 A/W, a specific detectivity of 1.2 × 1012 Jones under 808 nm near-infrared light, coupled with a rapid response time of approximately 20 ms—among the fastest reported for VOPTs to date. This study not only advances the understanding of VOPT device physics but also highlights the potential of integrating bulk heterojunctions for the development of high-performance VOPTs.

1.
Y.
Xie
,
C.
Ding
,
Q.
Jin
,
L.
Zheng
,
Y.
Xu
,
H.
Xiao
,
M.
Cheng
,
Y.
Zhang
,
G.
Yang
,
M.
Li
,
L.
Li
, and
M.
Liu
, “
Organic transistor-based integrated circuits for future smart life
,”
SmartMat
e1261
(
2024
).
2.
J.
Chen
,
W.
Zhang
,
L.
Wang
, and
G.
Yu
, “
Recent research progress of organic small-molecule semiconductors with high electron mobilities
,”
Adv. Mater.
35
(
11
),
2210772
(
2023
).
3.
Z.
Qin
,
H.
Gao
,
H.
Dong
, and
W.
Hu
, “
Organic light-emitting transistors entering a new development stage
,”
Adv. Mater.
33
(
31
),
2007149
(
2021
).
4.
X.
Huang
,
D.
Ji
,
H.
Fuchs
,
W.
Hu
, and
T.
Li
, “
Recent progress in organic phototransistors: Semiconductor materials, device structures and optoelectronic applications
,”
ChemPhotoChem
4
(
1
),
9
38
(
2020
).
5.
C.
Wang
,
X.
Zhang
, and
W.
Hu
, “
Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications
,”
Chem. Soc. Rev.
49
,
653
670
(
2020
).
6.
X.
Wu
,
S.
Mao
,
J.
Chen
, and
J.
Huang
, “
Strategies for improving the performance of sensors based on organic field-effect transistors
,”
Adv. Mater.
30
(
17
),
1705642
(
2018
).
7.
K.
Chen
,
X.
Zhang
,
P.-A.
Chen
,
J.
Guo
,
M.
He
,
Y.
Chen
,
X.
Qiu
,
Y.
Liu
,
H.
Chen
,
Z.
Zeng
,
X.
Wang
,
J.
Yuan
,
W.
Ma
,
L.
Liao
,
T.-Q.
Nguyen
, and
Y.
Hu
, “
Solution-processed CsPbB3 quantum dots/organic semiconductor planar heterojunctions for high-performance photodetectors
,”
Adv. Sci.
9
(
12
),
2105856
(
2022
).
8.
H.
Shao
,
Y.
Li
,
J.
Chen
,
W.
Yang
,
L.
Wang
,
J.
Fu
,
Y.
Wang
,
H.
Ling
,
L.
Xie
, and
W.
Huang
, “
Mimicking evasive behavior in wavelength-dependent reconfigurable phototransistors with ultralow power consumption
,”
SmartMat
e1230
(
2023
).
9.
H.
Hlaing
,
C.-H.
Kim
,
F.
Carta
,
C.-Y.
Nam
,
R. A.
Barton
,
N.
Petrone
,
J.
Hone
, and
I.
Kymissis
, “
Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures
,”
Nano Lett.
15
(
1
),
69
74
(
2015
).
10.
A.
Nawaz
,
L.
Merces
,
L. M. M.
Ferro
,
P.
Sonar
, and
C. C. B.
Bufon
, “
Impact of planar and vertical organic field-effect transistors on flexible electronics
,”
Adv. Mater.
35
(
11
),
2204804
(
2023
).
11.
Q.
Chen
,
D.
Lai
,
L.
He
,
Y.
Yan
,
E.
Li
,
Y.
Liu
,
H.
Zeng
,
H.
Chen
, and
T.
Guo
, “
High-performance vertical organic phototransistors enhanced by ferroelectrics
,”
ACS Appl. Mater. Interfaces
13
(
1
),
1035
1042
(
2021
).
12.
G.
Zhang
,
J.
Zhong
,
Q.
Chen
,
Y.
Yan
,
H.
Chen
, and
T.
Guo
, “
High-performance organic phototransistors with vertical structure design
,”
IEEE Trans. Electron Devices
66
,
1815
1818
(
2019
).
13.
H.-M.
An
,
H.
Jang
,
H.
Kim
,
S.-D.
Lee
,
S.-H.
Lee
, and
H.-L.
Park
, “
Engineered current path of vertical organic phototransistors for smart optoelectronic applications
,”
J. Mater. Chem. C
11
,
14580
14588
(
2023
).
14.
X.
Qiu
,
J.
Guo
,
P.-A.
Chen
,
K.
Chen
,
Y.
Liu
,
C.
Ma
,
H.
Chen
, and
Y.
Hu
, “
Doped vertical organic field-effect transistors demonstrating superior bias-stress stability
,”
Small
17
(
32
),
2101325
(
2021
).
15.
J.
Guo
,
G.
Li
,
H.
Reith
,
L.
Jiang
,
M.
Wang
,
Y.
Li
,
X.
Wang
,
Z.
Zeng
,
H.
Zhao
,
X.
Lu
,
G.
Schierning
,
K.
Nielsch
,
L.
Liao
, and
Y.
Hu
, “
Doping high-mobility donor-acceptor copolymer semiconductors with an organic salt for high-performance thermoelectric materials
,”
Adv. Electron. Mater.
6
(
3
),
1900945
(
2020
).
16.
J.
Guo
,
Y.
Liu
,
P.-A.
Chen
,
X.
Qiu
,
H.
Wei
,
J.
Xia
,
H.
Chen
,
Z.
Zeng
,
L.
Liao
, and
Y.
Hu
, “
Tuning the electrical performance of 2D perovskite field-effect transistors by forming organic semiconductor/perovskite van der Waals heterojunctions
,”
Adv. Electron. Mater.
8
(
7
),
2200148
(
2022
).
17.
Y.
Liu
,
H.
Wei
,
J.
Guo
,
P.-A.
Chen
,
S.
Liu
,
J.
Li
,
L.
Miao
,
N.
Wang
,
Z.
Chen
,
J.
Wang
,
H.
Chen
, and
Y.
Hu
, “
Understanding the enhancement of responsitivity in perovskite/organic semiconductor bilayer-structured photodetectors
,”
Org. Electron.
75
,
105372
(
2019
).
18.
W.
Shao
,
L.
Wang
,
H.
Wang
,
Z.
Zhao
,
X.
Zhang
,
S.
Jiang
,
S.
Chen
,
X.
Sun
,
Q.
Zhang
, and
Y.
Xie
, “
Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance
,”
J. Phys. Chem. Lett.
10
,
2904
(
2019
).
19.
R.
Wang
,
C.
Zhang
,
Q.
Li
,
Z.
Zhang
,
X.
Wang
, and
M.
Xiao
, “
Charge separation from an intra-moiety intermediate state in the high-performance PM6:Y6 organic photovoltaic blend
,”
J. Am. Chem. Soc.
142
,
12751
12759
(
2020
).
20.
K.
Chen
,
H.
Wei
,
P.-A.
Chen
,
Y.
Liu
,
J.
Guo
,
J.
Xia
,
H.
Xie
,
X.
Qiu
, and
Y.
Hu
, “
Band-like transport in non-fullerene acceptor semiconductor Y6
,”
Front. Optoelectron.
15
,
26
(
2022
).
21.
A. J.
Ben-Sasson
and
N.
Tessler
, “
Patterned Electrode Vertical OFET: Analytical description, switching mechanisms and optimization rules
,” in
Conference on Organic Field-Effect Transistors X
,
San Diego, CA
,
2011
.
22.
A. J.
Ben-Sasson
and
N.
Tessler
, “
Patterned electrode vertical field effect transistor: Theory and experiment
,”
J. Appl. Phys.
110
,
044501
(
2011
).
23.
Y. J.
Choi
,
J. S.
Kim
,
J. Y.
Cho
,
H. J.
Woo
,
J.
Yang
,
Y. J.
Song
,
M. S.
Kang
,
J. T.
Han
, and
J. H.
Cho
, “
Tunable charge injection via solution-processed reduced graphene oxide electrode for vertical Schottky barrier transistors
,”
Chem. Mater.
30
,
636
643
(
2018
).
24.
K.
Intonti
,
E.
Faella
,
A.
Kumar
,
L.
Viscardi
,
F.
Giubileo
,
N.
Martucciello
,
H. T.
Lam
,
K.
Anastasiou
,
M.
Craciun
,
S.
Russo
, and
A.
Di Bartolomeo
, “
Temperature-dependent conduction and photoresponse in few-layer ReS2
,”
ACS Appl. Mater. Interfaces
15
(
43
),
50302
50311
(
2023
).
25.
H.
Kleemann
,
K.
Krechan
,
A.
Fischer
, and
K.
Leo
, “
A review of vertical organic transistors
,”
Adv. Funct. Mater.
30
(
20
),
1907113
(
2020
).
26.
J.
Zhong
,
X.
Wu
,
S.
Lan
,
Y.
Fang
,
H.
Chen
, and
T.
Guo
, “
High performance flexible organic phototransistors with ultrashort channel length
,”
ACS Photonics
5
,
3712
3722
(
2018
).
27.
K.
Yeliu
,
J.
Zhong
,
X.
Wang
,
Y.
Yan
,
Q.
Chen
,
Y.
Ye
,
H.
Chen
, and
T.
Guo
, “
High performance n-type vertical organic phototransistors
,”
Org. Electron.
67
,
200
207
(
2019
).
28.
Y.
Zhao
,
M.
Zhu
,
G.
Feng
, and
Q.
Ge
, “
Preparation and analysis of single and hybrid metal-phthalocyanine organic phototransistors and comparison of their photoelectric properties
,”
Org. Electron.
112
,
106694
(
2023
).
29.
T.
Wei
,
Z.
Han
,
X.
Zhong
,
Q.
Xiao
,
T.
Liu
, and
D.
Xiang
, “
Two dimensional semiconducting materials for ultimately scaled transistors
,”
IScience
25
(
10
),
105160
(
2022
).
30.
J.
Brodsky
,
I.
Gablech
,
L.
Migliaccio
,
M.
Havli'cek
,
M. J. J.
Donahue
, and
E. D. D.
Glowacki
, “
Downsizing the channel length of vertical organic electrochemical transistors
,”
ACS Appl. Mater. Interfaces
15
(
22
),
27002
27009
(
2023
).
31.
Y.
Kaneko
,
Y.
Nishitani
,
M.
Ueda
,
E.
Tokumitsu
, and
E.
Fujii
, “
A 60 nm channel length ferroelectric-gate field-effect transistor capable of fast switching and multilevel programming
,”
Appl. Phys. Lett.
99
(
18
),
182902
(
2011
).
You do not currently have access to this content.