The simultaneous breaking of time-reversal and inversion symmetry can lead to peculiar effects in Josephson junctions, such as the anomalous Josephson effect or supercurrent rectification, which is a dissipationless analog of the diode effect. Due to their impact in new quantum technologies, it is important to find robust platforms and external means to manipulate the above-mentioned effects in a controlled way. Here, we theoretically consider a Josephson junction based on a quantum spin Hall system as the normal channel, subjected to a magnetic field in the direction defined by spin-momentum locking, and in the presence of a local tip in close proximity to one of the metallic edges in the normal region. We consider different local perturbations, model normal and magnetic tips, and study how they affect the Josephson response of the device. In particular, we argue that magnetic tips are a useful tool that allows for tunability of both ϕ0 response and supercurrent rectification.

1.
S. D.
Sarma
,
M.
Freedman
, and
C.
Nayak
, “
Majorana zero modes and topological quantum computation
,”
npj Quantum Inf.
1
,
15001
(
2015
).
2.
M.
Sato
and
Y.
Ando
, “
Topological superconductors: A review
,”
Rep. Prog. Phys.
80
,
076501
(
2017
).
3.
R. M.
Lutchyn
,
E. P. A. M.
Bakkers
,
L. P.
Kouwenhoven
,
P.
Krogstrup
,
C. M.
Marcus
, and
Y.
Oreg
, “
Majorana zero modes in superconductor–semiconductor heterostructures
,”
Nat. Rev. Mater.
3
,
52
68
(
2018
).
4.
P.
Marra
, “
Majorana nanowires for topological quantum computation
,”
J. Appl. Phys.
132
,
231101
(
2022
).
5.
Y.
Tanaka
,
S.
Tamura
, and
J.
Cayao
, “
Theory of Majorana zero modes in unconventional superconductors
,”
Prog. Theor. Exp. Phys.
2024
,
ptae065
.
6.
K. C.
Nowack
,
F. H. L.
Koppens
,
Y. V.
Nazarov
, and
L. M. K.
Vandersypen
, “
Coherent control of a single electron spin with electric fields
,”
Science
318
,
1430
1433
(
2007
).
7.
D.
Bercioux
and
P.
Lucignano
, “
Quantum transport in Rashba spin-orbit materials: A review
,”
Rep. Prog. Phys.
78
,
106001
(
2015
).
8.
A.
Manchon
,
H. C.
Koo
,
J.
Nitta
,
S. M.
Frolov
, and
R. A.
Duine
, “
New perspectives for Rashba spin–orbit coupling
,”
Nat. Mater.
14
,
871
882
(
2015
).
9.
C. M.
Moehle
,
C. T.
Ke
,
Q.
Wang
,
C.
Thomas
,
D.
Xiao
,
S.
Karwal
,
M.
Lodari
,
V.
van de Kerkhof
,
R.
Termaat
,
G. C.
Gardner
,
G.
Scappucci
,
M. J.
Manfra
, and
S.
Goswami
, “
InSbAs two-dimensional electron gases as a platform for topological superconductivity
,”
Nano Lett.
21
,
9990
9996
(
2021
).
10.
F. D. M.
Haldane
, “
Nobel Lecture: Topological quantum matter
,”
Rev. Mod. Phys.
89
,
040502
(
2017
).
11.
E.
Prada
,
P.
San-Jose
,
M. W. A.
de Moor
,
A.
Geresdi
,
E. J. H.
Lee
,
J.
Klinovaja
,
D.
Loss
,
J.
Nygård
,
R.
Aguado
, and
L. P.
Kouwenhoven
, “
From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires
,”
Nat. Rev. Phys.
2
,
575
594
(
2020
).
12.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
(
2006
).
13.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
770
(
2007
).
14.
R. S.
Deacon
,
J.
Wiedenmann
,
E.
Bocquillon
,
F.
Domínguez
,
T. M.
Klapwijk
,
P.
Leubner
,
C.
Brüne
,
E. M.
Hankiewicz
,
S.
Tarucha
,
K.
Ishibashi
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Josephson radiation from gapless Andreev bound states in HgTe-based topological junctions
,”
Phys. Rev. X
7
,
021011
(
2017
).
15.
C.
Wu
,
B. A.
Bernevig
, and
S.-C.
Zhang
, “
Helical liquid and the edge of quantum spin Hall systems
,”
Phys. Rev. Lett.
96
,
106401
(
2006
).
16.
X.-L.
Qi
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Fractional charge and quantized current in the quantum spin Hall state
,”
Nat. Phys.
4
,
273
276
(
2008
).
17.
F.
Crépin
,
B.
Trauzettel
, and
F.
Dolcini
, “
Signatures of Majorana bound states in transport properties of hybrid structures based on helical liquids
,”
Phys. Rev. B
89
,
205115
(
2014
).
18.
G.
Dolcetto
,
M.
Sassetti
, and
T. L.
Schmidt
, “
Edge physics in two-dimensional topological insulators
,”
La Riv. Nuovo Cimento
39
,
113
154
(
2016
).
19.
F.
Ronetti
,
L.
Vannucci
,
G.
Dolcetto
,
M.
Carrega
, and
M.
Sassetti
, “
Spin-thermoelectric transport induced by interactions and spin-flip processes in two-dimensional topological insulators
,”
Phys. Rev. B
93
,
165414
(
2016
).
20.
N.
Traverso Ziani
,
C.
Fleckenstein
,
G.
Dolcetto
, and
B.
Trauzettel
, “
Fractional charge oscillations in quantum dots with quantum spin Hall effect
,”
Phys. Rev. B
95
,
205418
(
2017
).
21.
N. T.
Ziani
,
C.
Fleckenstein
,
L.
Vigliotti
,
B.
Trauzettel
, and
M.
Sassetti
, “
From fractional solitons to Majorana fermions in a paradigmatic model of topological superconductivity
,”
Phys. Rev. B
101
,
195303
(
2020
).
22.
C.
Fleckenstein
,
N. T.
Ziani
,
A.
Calzona
,
M.
Sassetti
, and
B.
Trauzettel
, “
Formation and detection of Majorana modes in quantum spin Hall trenches
,”
Phys. Rev. B
103
,
125303
(
2021
).
23.
L.
Vigliotti
,
A.
Calzona
,
B.
Trauzettel
,
M.
Sassetti
, and
N. T.
Ziani
, “
Anomalous flux periodicity in proximitised quantum spin Hall constrictions
,”
New J. Phys.
24
,
053017
(
2022
).
24.
J.
Jia
,
E.
Marcellina
,
A.
Das
,
M. S.
Lodge
,
B.
Wang
,
D.-Q.
Ho
,
R.
Biswas
,
T. A.
Pham
,
W.
Tao
,
C.-Y.
Huang
,
H.
Lin
,
A.
Bansil
,
S.
Mukherjee
, and
B.
Weber
, “
Tuning the many-body interactions in a helical Luttinger liquid
,”
Nat. Commun.
13
,
6046
(
2022
).
25.
S.
Traverso
,
M.
Sassetti
, and
N.
Traverso Ziani
, “
Emerging topological bound states in Haldane model zigzag nanoribbons
,”
npj Quantum Mater.
9
,
9
(
2024
).
26.
V. S.
Pribiag
,
A. J. A.
Beukman
,
F.
Qu
,
M. C.
Cassidy
,
C.
Charpentier
,
W.
Wegscheider
, and
L. P.
Kouwenhoven
, “
Edge-mode superconductivity in a two-dimensional topological insulator
,”
Nat. Nanotechnol.
10
,
593
597
(
2015
).
27.
F.
Qu
,
J.
van Veen
,
F. K.
de Vries
,
A. J. A.
Beukman
,
M.
Wimmer
,
W.
Yi
,
A. A.
Kiselev
,
B.-M.
Nguyen
,
M.
Sokolich
,
M. J.
Manfra
,
F.
Nichele
,
C. M.
Marcus
, and
L. P.
Kouwenhoven
, “
Quantized conductance and large g-factor anisotropy in InSb quantum point contacts
,”
Nano Lett.
16
,
7509
7513
(
2016
).
28.
A.
Rasmussen
,
J.
Danon
,
H.
Suominen
,
F.
Nichele
,
M.
Kjaergaard
, and
K.
Flensberg
, “
Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions
,”
Phys. Rev. B
93
,
155406
(
2016
).
29.
S.
Salimian
,
M.
Carrega
,
I.
Verma
,
V.
Zannier
,
M. P.
Nowak
,
F.
Beltram
,
L.
Sorba
, and
S.
Heun
, “
Gate-controlled supercurrent in ballistic InSb nanoflag Josephson junctions
,”
Appl. Phys. Lett.
119
,
214004
(
2021
).
30.
A.
Iorio
,
A.
Crippa
,
B.
Turini
,
S.
Salimian
,
M.
Carrega
,
L.
Chirolli
,
V.
Zannier
,
L.
Sorba
,
E.
Strambini
,
F.
Giazotto
, and
S.
Heun
, “
Half-integer Shapiro steps in highly transmissive InSb nanoflag Josephson junctions
,”
Phys. Rev. Res.
5
,
033015
(
2023
).
31.
K.
Kaperek
,
S.
Heun
,
M.
Carrega
,
P.
Wójcik
, and
M. P.
Nowak
, “
Theory of scanning gate microscopy imaging of the supercurrent distribution in a planar Josephson junction
,”
Phys. Rev. B
106
,
035432
(
2022
).
32.
C.
Baumgartner
,
L.
Fuchs
,
A.
Costa
,
S.
Reinhardt
,
S.
Gronin
,
G. C.
Gardner
,
T.
Lindemann
,
M. J.
Manfra
,
P. E.
Faria Junior
,
D.
Kochan
,
J.
Fabian
,
N.
Paradiso
, and
C.
Strunk
, “
Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions
,”
Nat. Nanotechnol.
17
,
39
44
(
2022
).
33.
L.
Fu
and
C. L.
Kane
, “
Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction
,”
Phys. Rev. B
79
,
161408
(
2009
).
34.
F.
Dolcini
,
M.
Houzet
, and
J. S.
Meyer
, “
Topological Josephson ϕ0 junctions
,”
Phys. Rev. B
92
,
035428
(
2015
).
35.
A.
Calzona
and
B.
Trauzettel
, “
Spin-resolved spectroscopy of helical Andreev bound states
,”
Phys. Rev. Res.
4
,
013182
(
2022
).
36.
G.
Blasi
,
F.
Taddei
,
L.
Arrachea
,
M.
Carrega
, and
A.
Braggio
, “
Nonlocal thermoelectricity in a superconductor–topological-insulator–superconductor junction in contact with a normal-metal probe: Evidence for helical edge states
,”
Phys. Rev. Lett.
124
,
227701
(
2020
).
37.
G.
Blasi
,
F.
Taddei
,
L.
Arrachea
,
M.
Carrega
, and
A.
Braggio
, “
Nonlocal thermoelectric engines in hybrid topological Josephson junctions
,”
Phys. Rev. B
103
,
235434
(
2021
).
38.
X.
Zhang
,
Z.
Lyu
,
G.
Yang
,
B.
Li
,
Y.-L.
Hou
,
T.
Le
,
X.
Wang
,
A.
Wang
,
X.
Sun
,
E.
Zhuo
,
G.
Liu
,
J.
Shen
,
F.
Qu
, and
L.
Lu
, “
Anomalous Josephson effect in topological insulator-based Josephson trijunction
,”
Chin. Phys. Lett.
39
,
017401
(
2022
).
39.
L.
Vigliotti
,
A.
Calzona
,
N.
Traverso Ziani
,
F. S.
Bergeret
,
M.
Sassetti
, and
B.
Trauzettel
, “
Effects of the spatial extension of the edge channels on the interference pattern of a helical Josephson junction
,”
Nanomaterials
13
,
569
(
2023
).
40.
L.
Vigliotti
,
F.
Cavaliere
,
G.
Passetti
,
M.
Sassetti
, and
N.
Traverso Ziani
, “
Reconstruction-induced ϕ0 Josephson effect in quantum spin Hall constrictions
,”
Nanomaterials
13
,
1497
(
2023
).
41.
A.
Zazunov
and
R.
Egger
, “
Supercurrent blockade in Josephson junctions with a Majorana wire
,”
Phys. Rev. B
85
,
104514
(
2012
).
42.
P.
San-Jose
,
E.
Prada
, and
R.
Aguado
, “
ac Josephson effect in finite-length nanowire junctions with Majorana modes
,”
Phys. Rev. Lett.
108
,
257001
(
2012
).
43.
Y.
Peng
,
F.
Pientka
,
E.
Berg
,
Y.
Oreg
, and
F.
von Oppen
, “
Signatures of topological Josephson junctions
,”
Phys. Rev. B
94
,
085409
(
2016
).
44.
J.
Cayao
,
P.
San-Jose
,
A. M.
Black-Schaffer
,
R.
Aguado
, and
E.
Prada
, “
Majorana splitting from critical currents in Josephson junctions
,”
Phys. Rev. B
96
,
205425
(
2017
).
45.
A.
Maiellaro
,
J.
Settino
,
C.
Guarcello
,
F.
Romeo
, and
R.
Citro
, “
Hallmarks of orbital-flavored Majorana states in Josephson junctions based on oxide nanochannels
,”
Phys. Rev. B
107
,
L201405
(
2023
).
46.
E.
Strambini
,
A.
Iorio
,
O.
Durante
,
R.
Citro
,
C.
Sanz-Fernández
,
C.
Guarcello
,
I. V.
Tokatly
,
A.
Braggio
,
M.
Rocci
,
N.
Ligato
,
V.
Zannier
,
L.
Sorba
,
F. S.
Bergeret
, and
F.
Giazotto
, “
A Josephson phase battery
,”
Nat. Nanotechnol.
15
,
656
660
(
2020
).
47.
J.
Hu
,
C.
Wu
, and
X.
Dai
, “
Proposed design of a Josephson diode
,”
Phys. Rev. Lett.
99
,
067004
(
2007
).
48.
R.
Wakatsuki
,
Y.
Saito
,
S.
Hoshino
,
Y. M.
Itahashi
,
T.
Ideue
,
M.
Ezawa
,
Y.
Iwasa
, and
N.
Nagaosa
, “
Nonreciprocal charge transport in noncentrosymmetric superconductors
,”
Sci. Adv.
3
,
e1602390
(
2017
).
49.
S.
Hoshino
,
R.
Wakatsuki
,
K.
Hamamoto
, and
N.
Nagaosa
, “
Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors
,”
Phys. Rev. B
98
,
054510
(
2018
).
50.
K.
Yasuda
,
H.
Yasuda
,
T.
Liang
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
N.
Nagaosa
,
M.
Kawasaki
, and
Y.
Tokura
, “
Nonreciprocal charge transport at topological insulator/superconductor interface
,”
Nat. Commun.
10
,
2734
(
2019
).
51.
F.
Ando
,
Y.
Miyasaka
,
T.
Li
,
J.
Ishizuka
,
T.
Arakawa
,
Y.
Shiota
,
T.
Moriyama
,
Y.
Yanase
, and
T.
Ono
, “
Observation of superconducting diode effect
,”
Nature
584
,
373
376
(
2020
).
52.
K.
Misaki
and
N.
Nagaosa
, “
Theory of the nonreciprocal Josephson effect
,”
Phys. Rev. B
103
,
245302
(
2021
).
53.
Y.
Tanaka
,
B.
Lu
, and
N.
Nagaosa
, “
Theory of giant diode effect in d-wave superconductor junctions on the surface of a topological insulator
,”
Phys. Rev. B
106
,
214524
(
2022
).
54.
A.
Daido
,
Y.
Ikeda
, and
Y.
Yanase
, “
Intrinsic superconducting diode effect
,”
Phys. Rev. Lett.
128
,
037001
(
2022
).
55.
B.
Lu
,
S.
Ikegaya
,
P.
Burset
,
Y.
Tanaka
, and
N.
Nagaosa
, “
Tunable Josephson diode effect on the surface of topological insulators
,”
Phys. Rev. Lett.
131
,
096001
(
2023
).
56.
S.
Reinhardt
,
T.
Ascherl
,
A.
Costa
,
J.
Berger
,
S.
Gronin
,
G. C.
Gardner
,
T.
Lindemann
,
M. J.
Manfra
,
J.
Fabian
,
D.
Kochan
,
C.
Strunk
, and
N.
Paradiso
, “
Link between supercurrent diode and anomalous Josephson effect revealed by gate-controlled interferometry
,”
Nat. Commun.
15
,
4413
(
2024
).
57.
R. S.
Souto
,
M.
Leijnse
,
C.
Schrade
,
M.
Valentini
,
G.
Katsaros
, and
J.
Danon
, “
Tuning the Josephson diode response with an ac current
,”
Phys. Rev. Res.
6
,
L022002
(
2024
).
58.
J.
Cayao
,
N.
Nagaosa
, and
Y.
Tanaka
, “
Enhancing the Josephson diode effect with Majorana bound states
,”
Phys. Rev. B
109
,
L081405
(
2024
).
59.
N. F. Q.
Yuan
and
L.
Fu
, “
Supercurrent diode effect and finite-momentum superconductors
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2119548119
(
2022
).
60.
L.
Bauriedl
,
C.
Bäuml
,
L.
Fuchs
,
C.
Baumgartner
,
N.
Paulik
,
J. M.
Bauer
,
K.-Q.
Lin
,
J. M.
Lupton
,
T.
Taniguchi
,
K.
Watanabe
,
C.
Strunk
, and
N.
Paradiso
, “
Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2
,”
Nat. Commun.
13
,
4266
(
2022
).
61.
E.
Strambini
,
M.
Spies
,
N.
Ligato
,
S.
Ilić
,
M.
Rouco
,
C.
González-Orellana
,
M.
Ilyn
,
C.
Rogero
,
F. S.
Bergeret
,
J. S.
Moodera
,
P.
Virtanen
,
T. T.
Heikkilä
, and
F.
Giazotto
, “
Superconducting spintronic tunnel diode
,”
Nat. Commun.
13
,
2431
(
2022
).
62.
J.
Yun
,
S.
Son
,
J.
Shin
,
G.
Park
,
K.
Zhang
,
Y. J.
Shin
,
J.-G.
Park
, and
D.
Kim
, “
Magnetic proximity-induced superconducting diode effect and infinite magnetoresistance in a van der Waals heterostructure
,”
Phys. Rev. Res.
5
,
L022064
(
2023
).
63.
H.
Wu
,
Y.
Wang
,
Y.
Xu
,
P. K.
Sivakumar
,
C.
Pasco
,
U.
Filippozzi
,
S. S. P.
Parkin
,
Y.-J.
Zeng
,
T.
McQueen
, and
M. N.
Ali
, “
The field-free Josephson diode in a van der Waals heterostructure
,”
Nature
604
,
653
656
(
2022
).
64.
A.
Sundaresh
,
J. I.
Väyrynen
,
Y.
Lyanda-Geller
, and
L. P.
Rokhinson
, “
Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors
,”
Nat. Commun.
14
,
1628
(
2023
).
65.
Y.
Hou
,
F.
Nichele
,
H.
Chi
,
A.
Lodesani
,
Y.
Wu
,
M. F.
Ritter
,
D. Z.
Haxell
,
M.
Davydova
,
S.
Ilić
,
O.
Glezakou-Elbert
,
A.
Varambally
,
F. S.
Bergeret
,
A.
Kamra
,
L.
Fu
,
P. A.
Lee
, and
J. S.
Moodera
, “
Ubiquitous superconducting diode effect in superconductor thin films
,”
Phys. Rev. Lett.
131
,
027001
(
2023
).
66.
B.
Turini
,
S.
Salimian
,
M.
Carrega
,
A.
Iorio
,
E.
Strambini
,
F.
Giazotto
,
V.
Zannier
,
L.
Sorba
, and
S.
Heun
, “
Josephson diode effect in high-mobility InSb nanoflags
,”
Nano Lett.
22
,
8502
8508
(
2022
).
67.
M.
Davydova
,
S.
Prembabu
, and
L.
Fu
, “
Universal Josephson diode effect
,”
Sci. Adv.
8
,
eabo0309
(
2022
).
68.
R. S.
Souto
,
M.
Leijnse
, and
C.
Schrade
, “
Josephson diode effect in supercurrent interferometers
,”
Phys. Rev. Lett.
129
,
267702
(
2022
).
69.
J.
Wang
,
Y.
Jiang
,
J. J.
Wang
, and
J.-F.
Liu
, “
Efficient Josephson diode effect on a two-dimensional topological insulator with asymmetric magnetization
,”
Phys. Rev. B
109
,
075412
(
2024
).
70.
J.-D.
Pillet
,
S.
Annabi
,
A.
Peugeot
,
H.
Riechert
,
E.
Arrighi
,
J.
Griesmar
, and
L.
Bretheau
, “
Josephson diode effect in Andreev molecules
,”
Phys. Rev. Res.
5
,
033199
(
2023
).
71.
J. J.
He
,
Y.
Tanaka
, and
N.
Nagaosa
, “
A phenomenological theory of superconductor diodes
,”
New J. Phys.
24
,
053014
(
2022
).
72.
S.
Ilić
and
F. S.
Bergeret
, “
Theory of the supercurrent diode effect in Rashba superconductors with arbitrary disorder
,”
Phys. Rev. Lett.
128
,
177001
(
2022
).
73.
Y.
Zhang
,
Y.
Gu
,
P.
Li
,
J.
Hu
, and
K.
Jiang
, “
General theory of Josephson diodes
,”
Phys. Rev. X
12
,
041013
(
2022
).
74.
A.
Costa
,
J.
Fabian
, and
D.
Kochan
, “
Microscopic study of the Josephson supercurrent diode effect in Josephson junctions based on two-dimensional electron gas
,”
Phys. Rev. B
108
,
054522
(
2023
).
75.
J. F.
Steiner
,
L.
Melischek
,
M.
Trahms
,
K. J.
Franke
, and
F.
von Oppen
, “
Diode effects in current-biased Josephson junctions
,”
Phys. Rev. Lett.
130
,
177002
(
2023
).
76.
M.
Coraiola
,
A. E.
Svetogorov
,
D. Z.
Haxell
,
D.
Sabonis
,
M.
Hinderling
,
S. C.
ten Kate
,
E.
Cheah
,
F.
Krizek
,
R.
Schott
,
W.
Wegscheider
,
J. C.
Cuevas
,
W.
Belzig
, and
F.
Nichele
, “
Flux-tunable Josephson diode effect in a hybrid four-terminal Josephson junction
,”
ACS Nano
18
,
9221
9231
(
2024
).
77.
J.
Qian
,
B. I.
Halperin
, and
E. J.
Heller
, “
Imaging and manipulating electrons in a one-dimensional quantum dot with Coulomb blockade microscopy
,”
Phys. Rev. B
81
,
125323
(
2010
).
78.
N. T.
Ziani
,
F.
Cavaliere
, and
M.
Sassetti
, “
Theory of the STM detection of Wigner molecules in spin-incoherent CNTs
,”
Europhys. Lett.
102
,
47006
(
2013
).
79.
I.
Shapir
,
A.
Hamo
,
S.
Pecker
,
C. P.
Moca
,
O.
Legeza
,
G.
Zarand
, and
S.
Ilani
, “
Imaging the electronic Wigner crystal in one dimension
,”
Science
364
,
870
875
(
2019
).
80.
T.
Michlmayr
,
N.
Saratz
,
A.
Vaterlaus
,
D.
Pescia
, and
U.
Ramsperger
, “
Local-magnetic-field generation with a scanning tunneling microscope
,”
J. Appl. Phys.
99
,
08N502
(
2006
).
81.
S.-h.
Phark
and
D.
Sander
, “
Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes
,”
Nano Convergence
4
,
8
(
2017
).
82.
M.
Haze
,
H.-H.
Yang
,
K.
Asakawa
,
N.
Watanabe
,
R.
Yamamoto
,
Y.
Yoshida
, and
Y.
Hasegawa
, “
Bulk ferromagnetic tips for spin-polarized scanning tunneling microscopy
,”
Rev. Sci. Instrum.
90
,
013704
(
2019
).
83.
C. W. J.
Beenakker
, “
Universal limit of critical-current fluctuations in mesoscopic Josephson junctions
,”
Phys. Rev. Lett.
67
,
3836
3839
(
1991
).
84.
C. W. J.
Beenakker
and
H.
van Houten
, “
The superconducting quantum point contact
,” in
Nanostructures and Mesoscopic Systems
, edited by
W. P.
Kirk
and
M. A.
Reed
(
Academic Press
,
1992
), pp.
481
497
.
85.
C. W. J.
Beenakker
, “
Three “universal” mesoscopic Josephson effects
,” in
Transport Phenomena in Mesoscopic Systems
, edited by
H.
Fukuyama
and
T.
Ando
(
Springer
Berlin Heidelberg, Berlin, Heidelberg
,
1992
), pp.
235
253
.
86.
F.
Dolcini
and
F.
Giazotto
, “
Switching the sign of Josephson current through Aharonov-Bohm interferometry
,”
Phys. Rev. B
75
,
140511
(
2007
).
87.
The 1/2 in front of the logarithm is necessary in order not to take into account the negative energy states that arise from particle-hole symmetry.
88.
X.
Mu
,
G.
Sullivan
, and
R.-R.
Du
, “
Effective g-factors of carriers in inverted InAs/GaSb bilayers
,”
Appl. Phys. Lett.
108
,
012101
(
2016
).
89.
H.
Huang
,
T.
de Picoli
, and
J. I.
Väyrynen
, “
Superconducting diode effect in two-dimensional topological insulator edges and Josephson junctions
,” arXiv:2404.14566 [cond-mat.supr-con] (
2024
).
90.
N.
Lotfizadeh
,
W. F.
Schiela
,
B.
Pekerten
,
P.
Yu
,
B. H.
Elfeky
,
W. M.
Strickland
,
A.
Matos-Abiague
, and
J.
Shabani
, “
Superconducting diode effect sign change in epitaxial Al-InAs Josephson junctions
,”
Commun. Phys.
7
,
120
(
2024
).
91.
Notice that for the value Uz=0.5Δ0 chosen in Figs. 4(a) and 4(b), the magnetic field at the peak position δUx80Δ0 is of the order of 1.25T.
You do not currently have access to this content.